The Research Library of Newfound Research

Tag: momentum Page 1 of 4

Tranching, Trend, and Mean Reversion

This post is available as a PDF download here.

Summary

  • In past research we have explored the potential benefits of how-based diversification through the lens of pay-off functions.
  • Specifically, we explored how strategic rebalancing created a concave payoff while momentum / trend-following created a convex payoff. By combining these two approaches, total portfolio payoff became more neutral to the dispersion in return of underlying assets.
  • We have also spent considerable time exploring when-based diversification through our writing on rebalance timing luck.
  • To manage rebalance timing luck, we advocate for a tranching methodology that can be best distilled as rebalancing “a little but frequently.”
  • Herein, we demonstrate that the resulting payoff profile of a tranche-based rebalancing strategy closely resembles that of a portfolio that combines both strategic rebalancing and momentum/trend-following.
  • While we typically think of tranching as simply a way to de-emphasize the impact of a specific rebalancing date choice, this research suggests that for certain horizons, tranching may also be effective because it naturally introduces momentum/trend-following into the portfolio.

In Payoff Diversification (February 10th, 2020), we explored the idea of combining concave and convex payoff profiles.  Specifically, we demonstrated that rebalancing a strategic asset allocation was inherently concave (i.e. mean reversionary) whereas trend-following and momentum was inherently convex.  By combining the two approaches together, we could neutralize the implicit payoff profile of our portfolio with respect to performance of the underlying assets.

Source: Newfound Research.  Payoff Diversification (February 10th, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis.  Calculations by Newfound Research.  Returns are hypothetical and assume the reinvestment of all distributions.  Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index.  The rebalanced variation is rebalanced at the end of each month whereas the buy-and-hold variation is allowed to drift over the 1-year period.  The momentum portfolio is rebalanced monthly and selects the asset with the highest prior 12-month returns whereas the buy-and-hold variation is allowed to drift over the 1-year period. The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

The intuition behind why rebalancing is inherently mean-reversionary is fairly simple.  Consider a simple 50% stock / 50% bond portfolio.  Between rebalances, this allocation will drift based upon the relative performance of stocks and bonds.  When we rebalance, to right-size our relative allocations we must sell the asset that has out-performed and buy the one that has under-performed.  “Sell your winners and buy your losers” certainly sounds mean-reversionary to us.

In fact, one way to think about a rebalance is as the application of a long/short overlay on your portfolio.  For example, if the 50/50 portfolio drifted to a 45/55, we could think about rebalancing as holding the 45/55 and overlaying it with a +5/-5 long/short portfolio.  This perspective explicitly expresses the “buy the loser, short the winner” strategy.  In other words, we’re actively placing a trade that benefits when future returns between the two assets reverts.

While we may not be actively trying to express a view or forecast about future returns when we rebalance, we should consider the performance implications of our choice based upon whether the relative performance of these two assets continues to expand or contract:

 

Relative Performance Expands

Relative Performance Contracts

Rebalance

+

Do Not Rebalance

+

 

Our argument in Payoff Diversification was that by combining strategic rebalancing and momentum / trend following, we could help neutralize this implicit bet.

What we can also see in the table above, though, is that the simple act of not rebalancing benefits from a continuation of relative returns just as trend/momentum does.

Let’s keep that in the back of our minds and switch gears, for a moment, to portfolio tranching.  Frequent readers of our research notes will know we have spent considerable time researching the implications of rebalance timing luck.  We won’t go into great detail here, but the research can be broadly summarized as, “when you rebalance your portfolio can have meaningful implications for performance.”

Given the discussion above, why that result holds true follows naturally.  If two people hold 60/40 portfolios but rebalance them at different times in the year, their results will diverge based upon the relative performance of stocks and bonds between the rebalance periods.

As a trivial example, consider two 60/40 investors who each rebalance once a year.  One chooses to rebalance every March and one chooses to rebalance every September.  In 2008, the September investor would have re-upped his allocation to equities only to watch them sell-off for the next six months.  The March investor, on the other hand, would have rebalanced earlier that year and her equity allocation would have drifted lower as the 2008 crisis wore on.

Even better, she would rebalance in March 2009, re-upping her equity allocation near the market bottom and almost perfectly timing the performance mean-reversion that would unfold.  The September investor, on the other hand, would be underweight equities due to drift at this point.

Below we plot hypothetical drifted equity allocations for these investors over time.

Source: Tiingo. Calculations by Newfound Research. 

The implications are that rebalancing can imbed large, albeit unintentional, market-timing bets.

In Rebalance Timing Luck: The Difference between Hired and Fired we derived that the optimal solution for avoiding the impact of these rebalance decisions is portfolio tranching.  This is the same solution proposed by Blitz, van der Grient, and van Vliet (2010).

The whole concept of tranching can be summarized with the phrase: “a little but frequently.”  In other words, rebalance your portfolio more frequently, but only make small changes.  As an example, rather than rebalance once a year, we could rebalance 1/12th of our portfolio every month.  If our portfolio had drifted from a 60/40 to a 55/45, rather than rebalancing all the way back, we would just correct 1/12th of the drift, trading to a 55.42/44.58.1

Another way to think about this approach is as a collection of sub-portfolios.  For example, if we elected to implement a 12-month tranche, we might think of it as 12 separate sub-portfolios, each of which rebalances every 12 months but does so at the end of a different month (e.g. one rebalances in January, one in February, et cetera).

But why does this approach work?  It helps de-emphasize the mean-reversion bet for any given rebalance date.  We can see this by constructing the same payoff plots as before for different tranching speeds.  The 1-month tranche reflects a full monthly rebalance; a 3-month tranche reflects rebalancing 33.33% of the portfolio; a 6-month tranche reflects rebalancing 16.66% of the portfolio each month; et cetera.

Source: Newfound Research.  Payoff Diversification (February 10th, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis.  Calculations by Newfound Research.  Returns are hypothetical and assume the reinvestment of all distributions.  Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index.  The rebalanced variation is rebalanced partially at the end of each month whereas the buy-and-hold variation is allowed to drift over the 1-year period.  The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Note how the concave payoff function appears to “unbend” and the 12-month tranche appears similar in shape to payoff of the 90% strategic rebalance / 10% momentum strategy portfolio we plotted in the introduction.

Why might this be the case?  Recall that not rebalancing can be effective so long as there is continuation (i.e. momentum / trend) in the relative performance between stocks and bonds.  By allowing our portfolio to drift, our portfolio will naturally tilt itself towards the out-performing asset.  Furthermore, drift serves as an interesting amplifier to the momentum signal: the more persistent the relative out-performance, and the larger the relative out-performance in magnitude, the greater the resulting tilt.

While tranching naturally helps reduce rebalance timing luck by de-emphasizing each specific rebalance, we can also see that we may be able to naturally embed momentum into our process.

Conclusion

In portfolio management research, the answer we find is often a reflection of the angle by which a question is asked.

For example, in prior research notes, we have spent considerable time documenting the impact of rebalance timing luck in strategic asset allocation, tactical asset allocation, and factor investing.  The simple choice of when, though often overlooked in analysis, can have a significant impact upon realized results.  Therefore, in order to de-emphasize the choice of when, we introduce portfolio tranching.

We have also spent a good deal of time discussing the how axis of diversification (i.e. process).  Not only have we research this topic through the lens of ensemble techniques, but we have also explored it through the payoff profiles generated by each process.  We find that by combining diversifying concave and convex profiles – e.g. mean-reversion and momentum – we can potentially create a return profile that is more robust to different outcomes.

Herein, we found that tranching the rebalance of a strategic asset allocation may, in fact, allow us to naturally embed momentum without having to explicitly introduce a momentum strategy.  What we find, then, is that the two topics may not actually be independent avenues of research about when and how.  Rather, they may just different ways of exploring how to diversify the impacts of convexity and concavity in portfolio construction.

 


 

Diversification with Portable Beta

This post is available as a PDF download here.

Summary

  • A long/flat tactical equity strategy with a portable beta bond overlay – a tactical 90/60 portfolio – has many moving parts that can make attribution and analysis difficult.
  • By decomposing the strategy into its passive holdings (a 50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we can explore the historical performance of each component and diversification benefits across each piece of the strategy.
  • Using a mean-variance framework, we are also able to construct an efficient frontier of the strategy components and assess the differences between the optimal portfolio and the tactical 90/60.
  • We find that the tactical 90/60 is relatively close to the optimal portfolio for its volatility level and that its drawdown risk profile is close to that of an unlevered 60/40 portfolio.
  • By utilizing a modest amount of leverage and pairing it will risk management in both equities and bonds, investors may be able to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk.

Portable beta strategies seek to enhance returns by overlaying an existing portfolio strategy with complementary exposure to diversifying asset classes and strategies. In overlaying exposure on an existing portfolio strategy, portable beta strategies seek to make every invested dollar work harder. This idea can create “capital efficiency” for investors, freeing up dollars in an investor’s portfolio to invest in other asset classes or investment opportunities.

At Newfound, we focus on managing risk. Trend following – or absolute momentum – is a key approach we employ do this, especially in equities. Trend equity strategies are a class of strategies that aim to harvest the long-term benefits of the equity risk premium while managing downside risk through the application of trend following.

We wrote previously how a trend equity strategy can be decomposed into passive and active components in order to isolate different contributors to performance. There is more than one way to do this, but in the most symmetric formulation, a “long/flat” trend equity strategy (one that that either holds equities or cash; i.e. does not short equities) can be thought of as a 100% passive allocation to a 50/50 portfolio of stocks and cash plus a 50% overlay allocation to a long/short trend equity strategy that can move between fully short and fully long equities. This overlay component is portable beta.

We have also written previously about how a portable beta overlay of bonds can be beneficial to trend equity strategies – or even passive equity investments, for that matter. For example, 95% of a portfolio could be invested in a trend equity strategy, and the remaining 5% could be set aside as collateral to initiate a 60% overlay to 10-year U.S. Treasury futures. This approximates a 60/40 portfolio that is leveraged by 50%

Source: Newfound. Allocations are hypothetical and for illustrative purposes only.

Since this bond investment introduces interest rate risk, we have proposed ways to manage risk in this specific sleeve using factors such as value, carry, and momentum. By treating these factors as fully tactical long/short portfolios themselves, if we hold them in equal weight, we can also break down the tactical U.S. Treasury futures overlay into active and passive components, with a 30% passive position in U.S. Treasury futures and 10% in each of the factor-based strategies.

Source: Newfound. Allocations are hypothetical and for illustrative purposes only.

When each overlay is fully invested, the portfolio will hold 95% stocks, 5% cash, and 60% U.S. Treasury futures. When all the overlays are fully short, the strategy will be fully invested in cash with no bond overlay position.

While the strategy has not changed at all with this slicing and dicing, we now have a framework to explore the historical contributions of the active and passive components and the potential diversification benefits that they offer.

Diversification Among Components

For the passive portfolio 50/50 stock/cash, we will use a blend of the Vanguard Total U.S. stock market ETF (VTI) and the iShares Short-term Treasury Bond ETF (SHV) with Kenneth French data for market returns and the risk-free rate prior to ETF inception.

For the active L/S Trend Equity portfolio, we will use a long/short version of the Newfound U.S. Trend Equity Index.

The passive 10-year U.S. Treasury futures is the continuous futures contract with a proxy of the 10-year constant maturity Treasury index minus the cash index used before inception (January 2000). The active long/short bond factors can be found on the U.S. Treasuries section of our quantitative signals dashboard, which is updated frequently.

All data starts at the common inception point in May 1957.

As a technical side note, we must acknowledge that a constant maturity 10-year U.S. Treasury index minus a cash index will not precisely match the returns of 10-year U.S. Treasury futures. The specification of the futures contracts state that the seller of such a contract has the right to deliver any U.S. Treasury bond with maturity between 6.5 and 10 years. In other words, buyers of this contract are implicitly selling an option, knowing that the seller of the contract will likely choose the cheapest bond to deliver upon maturity (referred to as the “cheapest to deliver”). Based upon the specification and current interest rate levels, that current cheapest to deliver bond tends to have a maturity of 6.5 years.

This has a few implications. First, when you buy U.S. Treasury futures, you are selling optionality. Finance 101 will teach you that optionality has value, and therefore you would expect to earn some premium for selling it. Second, the duration profile between our proxy index and 10-year U.S. Treasury futures has meaningfully diverged in the recent decade. Finally, the roll yield harvested by the index and the futures will also diverge, which can have a non-trivial impact upon returns.

Nevertheless, we believe that for the purposes of this study, the proxy index is sufficient for broad, directional attribution and understanding.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

The 50/50 Stock/Cash portfolio is the only long-only holding. While the returns are lower for all the other strategies, we must keep in mind that they are all overlays that can add to the 50/50 portfolio rather than simply de-risk and cannibalize its return.

This is especially true since these overlay strategies have exhibited low correlation to the 50/50 portfolio.

The table below shows the full period correlation of monthly returns for all the portfolio components. The equity and bond sub-correlation matrices are outlined to highlight the internal diversification.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Not only do all of the overlays have low correlation to the 50/50 portfolio, but they generally exhibit low cross-correlations. Of the overlays, the L/S bond carry and L/S bond momentum strategies have the highest correlation (0.57), and the L/S bond carry and passive bond overlay have the next highest correlation (0.47).

The bond strategies have also exhibited low correlation to the equity strategies. This results in good performance, both absolute and risk-adjusted, relative to a benchmark 60/40 portfolio and a benchmark passive 90/60 portfolio.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Finding the Optimal Blend

Up to this point, we have only considered the fixed allocations to each of the active and passive strategies outlined at the beginning. But these may not be the optimal holdings.

Using a block-bootstrap method to simulate returns, we can utilize mean-variance optimization to determine the optimal portfolios for given volatility levels.1 This yields a resampled historical realized efficient frontier.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Plotting the benchmark 60/40, benchmark 90/60, and the tactical 90/60 on this efficient frontier, we see that the tactical 90/60 lies very close to the frontier at about 11.5% volatility. The allocations for the frontier are shown below.

 

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

As expected, the lower volatility portfolios hold more cash and the high volatility portfolios hold more equity. For the 9% volatility level, these two allocations match, leading to the full allocation to a 50/50 stock/cash blend as in the tactical 90/60.

The passive allocation to the Treasury futures peaks at about 60%, while the L/S bond factor allocations are generally between 5% and 20% with more emphasis on Value and typically equal emphasis on Carry and Momentum.

The allocations in the point along the efficient frontier that matches the tactical 90/60 portfolio’s volatility are shown below.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

In this portfolio, we see a higher allocation to passive equities, a smaller position in the tactical equity L/S, and a larger position in passive Treasury futures. However, given the resampled nature of the process, these allocations are not wildly far away from the tactical 90/60.

The differences in the allocations are borne out in the Ulcer Index risk metric, which quantifies the severity and duration of drawdowns.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

The efficient frontier portfolio has a lower Ulcer Index than that of the tactical 90/60 even though their returns and volatility are similar. However, the Ulcer index of the tactical 90/60 is very close to that of the benchmark 60/40.

These differences are likely due to the larger allocation to the tactical equity long/short which can experience whipsaws (e.g. in October 1987), the lower allocation to passive U.S. equities, and the lower allocation to the Treasury overlay.

In an uncertain future, there can be significant risk in relying too much on the past, but having this framework can be useful for gaining a deeper understanding of which market environments benefit or hurt each component within the portfolio and how they diversify each other when held together.

Conclusion

In this research note, we explored diversification in a long/flat tactical equity strategy with a portable beta bond overlay. By decomposing the strategy into its passive holdings (50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we found that each of the overlays has historically exhibited low correlation to the passive portfolios and low cross-correlations to each other. Combining all of these strategies using a tactical 90/60 portfolio has led to strong performance on both an absolute and risk-adjusted basis.

Using these strategy components, we constructed an efficient frontier of portfolios and also found that the “intuitive” tactical 90/60 portfolio that we have used in much of our portable beta research is close to the optimal portfolio for its volatility level. While this does not guarantee that this portfolio will be optimal over any given time period, it does provide evidence for the robustness of the multi-factor risk-managed approach.

Utilizing portable beta strategies can be an effective way for investors to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk. While leverage can introduce risks of its own, relying on diversification and robust risk-management methods (e.g. trend following) can mitigate the risk of large losses.

The fear of using leverage and derivatives may be an uphill battle for investors, and there are a few operational burdens to overcome, but when used appropriately, these tools can make portfolios work harder and lead to more flexibility for allocating to additional opportunities.

If you are interested in learning how Newfound applies the concepts of tactical portable beta to its mandates, please reach out (info@thinknewfound.com).

The Limit of Factor Timing

This post is available as a PDF download here.

Summary­

  • We have shown previously that it is possible to time factors using value and momentum but that the benefit is not large.
  • By constructing a simple model for factor timing, we examine what accuracy would be required to do better than a momentum-based timing strategy.
  • While the accuracy required is not high, finding the system that achieves that accuracy may be difficult.
  • For investors focused on managing the risks of underperformance – both in magnitude and frequency – a diversified factor portfolio may be the best choice.
  • Investors seeking outperformance will have to bear more concentration risk and may be open to more model risk as they forego the diversification among factors.

A few years ago, we began researching factor timing – moving among value, momentum, low volatility, quality, size etc. – with the hope of earning returns in excess not only of the equity market, but also of buy-and-hold factor strategies.

To time the factors, our natural first course of action was to exploit the behavioral biases that may create the factors themselves. We examined value and momentum across the factors and used these metrics to allocate to factors that we expected to outperform in the future.

The results were positive. However, taking into account transaction costs led to the conclusion that investors were likely better off simply holding a diversified factor portfolio.

We then looked at ways to time the factors using the business cycle.

The results in this case were even less convincing and were a bit too similar to a data-mined optimal solution to instill much faith going forward.

But this evidence does not necessarily remove the temptation to take a stab at timing the factors, especially since explicit transactions costs have been slashed for many investors accessing long-only factors through ETFs.Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

After all, there is a lot to gain by choosing the right factors. For example, in the first 9 months of 2019, the spread between the best (Quality) and worst (Value) performing factors was nearly 1,000 basis points (“bps”). One month prior, that spread had been double!

In this research note, we will move away from devising a systematic approach to timing the factors (as AQR asserts, this is deceptively difficult) and instead focus on what a given method would have to overcome to achieve consistent outperformance.

Benchmarking Factor Timing

With all equity factor strategies, the goal is usually to outperform the market-cap weighted equity benchmark.

Since all factor portfolios can be thought of as a market cap weighted benchmark plus a long/short component that captures the isolated factor performance, we can focus our study solely on the long/short portfolio.

Using the common definitions of the factors (from Kenneth French and AQR), we can look at periods over which these self-financing factor portfolios generate positive returns to see if overlaying them on a market-cap benchmark would have added value over different lengths of time.1

We will also include the performance of an equally weighted basket of the four factors (“Blend”).

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The persistence of factor outperformance over one-month periods is transient. If the goal is to outperform the most often, then the blended portfolio satisfies this requirement, and any timing strategy would have to be accurate enough to overcome this already existing spread.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The results for the blended portfolio are so much better than the stand-alone factors because the factors have correlations much lower than many other asset classes, allowing even naïve diversification to add tremendous value.

The blended portfolio also cuts downside risk in terms of returns. If the timing strategy is wrong, and chooses, for example, momentum in an underperforming month, then it could take longer for the strategy to climb back to even. But investors are used to short periods of underperformance and often (we hope) realize that some short-term pain is necessary for long-term gains.

Looking at the same analysis over rolling 1-year periods, we do see some longer periods of factor outperformance. Some examples are quality in the 1980s, value in the mid-2000s, momentum in the 1960s and 1990s, and size in the late-1970s.

However, there are also decent stretches where the factors underperform. For example, the recent decade for value, quality in the early 2010s, momentum sporadically in the 2000s, and size in the 1980s and 1990s. If the timing strategy gets stuck in these periods, then there can be a risk of abandoning it.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

Again, a blended portfolio would have addressed many of these underperforming periods, giving up some of the upside with the benefit of reducing the risk of choosing the wrong factor in periods of underperformance.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

And finally, if we extend our holding period to three years, which may be used for a slower moving signal based on either value or the business cycle, we see that the diversified portfolio still exhibits outperformance over the most rolling periods and has a strong ratio of upside to downside.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The diversified portfolio stands up to scrutiny against the individual factors but could a generalized model that can time the factors with a certain degree of accuracy lead to better outcomes?

Generic Factor Timing

To construct a generic factor timing model, we will consider a strategy that decides to hold each factor or not with a certain degree of accuracy.

For example, if the accuracy is 50%, then the strategy would essentially flip a coin for each factor. Heads and that factor is included in the portfolio; tails and it is left out. If the accuracy is 55%, then the strategy will hold the factor with a 55% probability when the factor return is positive and not hold the factor with the same probability when the factor return is negative. Just to be clear, this strategy is constructed with look-ahead bias as a tool for evaluation.

All factors included in the portfolio are equally weighted, and if no factors are included, then the returns is zero for that period.

This toy model will allow us to construct distributions to see where the blended portfolio of all the factors falls in terms of frequency of outperformance (hit rate), average outperformance, and average underperformance. The following charts show the percentiles of the diversified portfolio for the different metrics and model accuracies using 1,000 simulations.2

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

In terms of hit rate, the diversified portfolio behaves in the top tier of the models over all time periods for accuracies up to about 57%. Even with a model that is 60% accurate, the diversified portfolio was still above the median.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average underperformance, the diversified portfolio also did very well in the context of these factor timing models. The low correlation between the factors leads to opportunities for the blended portfolio to limit the downside of individual factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average outperformance, the diversified portfolio did much worse than the timing model over all time horizons. We can attribute this also to the low correlation between the factors, as choosing only a subset of factors and equally weighting them often leads to more extreme returns.

Overall, the diversified portfolio manages the risks of underperformance, both in magnitude and in frequency, at the expense of sacrificing outperformance potential. We saw this in the first section when we compared the diversified portfolio to the individual factors.

But if we want to have increased return potential, we will have to introduce some model risk to time the factors.

Checking in on Momentum

Momentum is one model-based way to time the factors. Under our definition of accuracy in the toy model, a 12-1 momentum strategy on the factors has an accuracy of about 56%. While the diversified portfolio exhibited some metrics in line with strategies that were even more accurate than this, it never bore concentration risk: it always held all four factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For the hit rate percentiles of the momentum strategy, we see a more subdued response. Momentum does not win as much as the diversified portfolio over the different time periods.

But not winning as much can be fine if you win bigger when you do win.

The charts below show that momentum does indeed have a higher outperformance percentile but with a worse underperformance percentile, especially for 1-month periods, likely due to mean reversionary whipsaw.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

While momentum is definitely not the only way to time the factors, it is a good baseline to see what is required for higher average outperformance.

Now, turning back to our generic factor timing model, what accuracy would you need to beat momentum?

Sharpening our Signal

The answer is: not a whole lot. Most of the time, we only need to be about 53% accurate to beat the momentum-based factor timing.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

The caveat is that this is the median performance of the simulations. The accuracy figure climbs closer to 60% if we use the 25th percentile as our target.

While these may not seem like extremely high requirements for running a successful factor timing strategy, it is important to observe that not many investors are doing this. True accuracy may be hard to discover, and sticking with the system may be even harder when the true accuracy can never be known.

Conclusion

If you made it this far looking for some rosy news on factor timing or the Holy Grail of how to do it skillfully, you may be disappointed.

However, for most investors looking to generate some modest benefits relative to market-cap equity, there is good news. Any signal for timing factors does not have to be highly accurate to perform well, and in the absence of a signal for timing, a diversified portfolio of the factors can lead to successful results by the metrics of average underperformance and frequency of underperformance.

For those investors looking for higher outperformance, concentration risk will be necessary.

Any timing strategy on low correlation investments will generally forego significant diversification in the pursuit of higher returns.

While this may be the goal when constructing the strategy, we should always pause and determine whether the potential benefits outweigh the costs. Transaction costs may be lower now. However, there are still operational burdens and the potential stress caused by underperformance when a system is not automated or when results are tracked too frequently.

Factor timing may be possible, but timing and tactical rotation may be better suited to scenarios where some of the model risk can be mitigated.

Risk-Adjusted Momentum: A Momentum and Low-Volatility Barbell?

This post is available as a PDF download here.

Summary

  • After the Great Financial Crisis, the Momentum factor has exhibited positive returns, but those returns have been largely driven by the short side of the portfolio.
  • One research note suggests that this is driven by increased risk aversion among investors, using the correlation of high volatility and low momentum baskets as evidence.
  • In contradiction to this point, the iShares Momentum ETF (MTUM) has generated positive excess annualized returns against its benchmark since inception. The same note suggests that this is due to the use of risk-adjusted momentum measures.
  • We explore whether risk-adjusting momentum scores introduces a meaningful and structural tilt towards low-volatility equities.
  • For the examples tested, we find that it does not, and risk-adjusted momentum portfolios behave very similarly to momentum portfolios.

A research note recently crossed my desk that aimed to undress the post-Global Financial Crisis (GFC) performance of the momentum factor in U.S. equities.  Not only have we witnessed a significant reduction in the factor’s return, but the majority of the return has been generated by the short side of the strategy, which can be more difficult for long-only investors to access.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The Long (Alpha) strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on 12-1 month momentum and shorts an equal-weight S&P 500 portfolio.  The Short (Alpha) strategy is a monthly rebalanced portfolio that goes long an equal-weight S&P 500 portfolio and shorts, in equal weight, the bottom 50 securities in the S&P 500 ranked on 12-1 month momentum.

The note makes the narratively-appealing argument that the back-to-back recessions of the dot-com bubble and the Great Financial Crisis amplified investor risk aversion to downside losses.  The proposed evidence of this fact is the correlation of the cumulative alpha generated from shorting low momentum stocks and the cumulative alpha generated from shorting high volatility stocks.

While correlation does not imply causation, one argument might be that in a heightened period of risk aversion, investors may consistently punish higher risk stocks, causing them to become persistent losers.  Or, conversely, losers may be rapidly sold, creating both persistence and high levels of volatility.  We can arguably see this in the convergence of holdings in low momentum and high volatility stocks during “risk off” regimes.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The HI VOL (Alpha) strategy is a monthly rebalanced portfolio that goes long an equal-weight S&P 500 portfolio and shorts, in equal weight, the bottom 50 securities in the S&P 500 ranked on trailing 252-day realized volatility.  The LO MOM (Alpha) strategy is a monthly rebalanced portfolio that goes long an equal-weight S&P 500 portfolio and shorts, in equal weight, the bottom 50 securities in the S&P 500 ranked on 12-1 month momentum.

Given these facts, we would expect long-only momentum investors to have harvested little out-performance in recent years.  Yet we find that the popular iShares Momentum ETF (MTUM) has out-performed the S&P 500 by 290 basis points per year since its inception in 2013.

The answer to this conundrum, as proposed by the research note, is that MTUM’s use of risk-adjusted momentum is the key.

If we think of risk-adjusted momentum as simply momentum divided by volatility (which is how MTUM defines it), we might interpret it as an integrated signal of both the momentum and low-volatility factors.  Therefore, risk-adjusting creates a multi-factor portfolio that tilts away from high volatility stocks.

And hence the out-performance.

Except if we actually create a risk-adjusted momentum portfolio, that does not appear to really be the case at all.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The alpha of the risk-adjusted momentum strategy is defined as the return of a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on risk-adjusted momentum (12-1 month momentum divided by 252-day realized volatility) and shorts an equal-weight S&P 500 portfolio.

To be fair, MTUM’s construction methodology differs quite a bit from that employed herein.  We are simply equally-weighting the top 50 stocks in the S&P 500 when ranked by risk-adjusted momentum, whereas MTUM uses a blend of 6- and 12-month risk-adjusted momentum scores and then tilts market-capitalization weights based upon those scores.

Nevertheless, if we look at actual holdings overlap over time of our Risk-Adjusted Momentum portfolio versus Momentum and Low Volatility portfolios, not only do we see persistently higher overlap with the Momentum portfolio, but we see fairly low average overlap with the Low Volatility portfolio.

For the latter point, it is worth first anchoring ourselves to the standard overlap between Momentum and Low Volatility (green line below).  While we can see that the Risk-Adjusted Momentum portfolio does indeed have a higher average overlap with Low Volatility than does the Momentum portfolio, the excess tilt to Low Volatility due to the use of risk-adjusted momentum (i.e. the orange line minus the green line) appears rather small.  In fact, on average, it is just 10%.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The risk-adjusted momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on risk-adjusted momentum (12-1 month momentum divided by 252-day realized volatility).  The momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on 12-1 month momentum.  The low volatility strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on trailing 252-day realized volatility.

This is further evident by looking at the actual returns of the strategies themselves:

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The risk-adjusted momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on risk-adjusted momentum (12-1 month momentum divided by 252-day realized volatility).  The momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on 12-1 month momentum.  The low volatility strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on trailing 252-day realized volatility.

The Risk-Adjusted Momentum portfolio performance tracks that of the Momentum portfolio very closely.

As it turns out, the step of adjusting for risk creates far less of a low volatility factor tilt in our top-decile portfolio than one might initially suspect.  (Or, at least, I’ll speak for myself: it created far less of a tilt than I expected.)

To understand this point, we will first re-write our risk-adjusted momentum signal as:

While trivial algebra, re-writing risk-adjusted momentum as the product of momentum and inverse volatility is informative to understanding why risk-adjusted momentum appears to load much more heavily on momentum than low volatility.

At a given point in time, it would appear as if Momentum and Low Volatility should have an equal influence on the rank of a given security.  However, we need to dig a level deeper and consider how changes in these variables impact change in risk-adjusted momentum.

Fortunately, the product makes this a trivial exercise: holding INVVOL constant, changes in MOM are scaled by INVVOL and vice versa.  This scaling effect can cause large changes in risk-adjusted momentum – and therefore ordinal ranking – particularly as MOM crosses the zero level.

Consider a trivial example where INVVOL is a very large number (e.g. 20) due to a security having a very low volatility profile (e.g. 5%).  This would appear, at first glance, to give a security a structural advantage and hence create a low volatility tilt in the portfolio.  However, a move from positive prior returns to negative prior returns would shift the security from ranking among the best to ranking among the worst in risk-adjusted momentum.1

A first order estimate of change in risk-adjusted momentum is:

So which term ultimately has more influence on the change in scores over time?

To get a sense of relative scale, we plot the cross-sectional mean absolute difference between the two terms over time.  This should, at least partially, capture interaction effects between the two terms.

Source: Sharadar.  Calculations by Newfound Research.

We can see that the term including the change in MOM has a much more significant influence on changes in risk-adjusted momentum than changes in INVVOL do.  Thus, we might expect a portfolio driven entirely by changes in momentum to share more in common with our risk-adjusted momentum portfolio than one driven entirely by changes in volatility.

This is somewhat evident when we plot the return of MTUM versus our top 50 style portfolios.  The correlation of daily returns between MTUM and our Momentum, Low Volatility, and Risk-Adjusted Momentum portfolios is 0.93, 0.72, and 0.93 respectively, further suggesting that MTUM is driven more by momentum than volatility.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The risk-adjusted momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on risk-adjusted momentum (12-1 month momentum divided by 252-day realized volatility).  The momentum strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on 12-1 month momentum.  The low volatility strategy is a monthly rebalanced portfolio that goes long, in equal weight, the top 50 securities in the S&P 500 ranked on trailing 252-day realized volatility.

This is only one part of the equation, however, as it is possible that changes to the risk-adjusted momentum score are so small – despite being largely driven by momentum – that relative rankings never actually change.  Or, because we have constructed our portfolios by choosing only the top 50 ranked securities, that momentum does drive the majority of change across the entire universe, but the top 50 are always structurally advantaged by the non-linear scaling of low volatility.

To create a more accurate picture, we can rank-weight the entire S&P 500 and evaluate the holdings overlap over time.

Source: Sharadar.  Calculations by Newfound Research.

Note that by now including all securities, and not just selecting the top 50, the overlap with both the Momentum and Low Volatility portfolios naturally appears higher on average.  Nonetheless, we can see that the overlap with the Momentum portfolio is consistently higher than that of the Low Volatility portfolio, again suggesting that momentum has a larger influence on the overall portfolio composition than volatility does.

Conclusion

Without much deep thought, it would be easy to assume that a risk-adjusted momentum measure – i.e. prior returns divided by realized volatility – would tilt a portfolio towards both prior winners and low-volatility securities, resulting in a momentum / low-volatility barbell.

Upon deeper consideration, however, the picture complicates quickly.  For example, momentum can be both positive and negative; dividing by volatility creates a non-linear impact; and momentum tends to change more rapidly than volatility.

We do not attempt to derive a precise, analytical equation that determines which of the two variables ultimately drives portfolio composition, but we do construct long-only example portfolios for empirical study.  We find that a high-concentration risk-adjusted momentum portfolio has significantly more overlap in holdings with a traditional momentum portfolio than a low-volatility portfolio, resulting in a more highly correlated return stream.

The most important takeaway from this note is that intuition can be deceiving: it is important to empirically test our assumptions to ensure we truly understand the impact of our strategy construction choices.

 


 

Value and the Credit Spread

This post is available as a PDF download here.

Summary­

  • We continue our exploration of quantitative signals in fixed income.
  • We use a measure of credit curve steepness as a valuation signal for timing exposure between corporate bonds and U.S. Treasuries.
  • The value signal generates a 0.84% annualized return from 1950 to 2019 but is highly regime dependent with meaningful drawdowns.
  • Introducing a naïve momentum strategy significantly improves the realized Sharpe ratio and drawdown profile, but does not reduce the regime-based nature of the returns.
  • With a combined return of just 1.0% annualized, this strategy may not prove effective after appropriate discounting for hindsight bias, costs, and manager fees. The signal itself, however, may be useful in other contexts.

In the last several weeks, we have been exploring the application of quantitative signals to fixed income.

Recent cross-sectional studies also build off of further research we’ve done in the past on applying trend, value, carry, and explicit measures of the bond risk premium as duration timing mechanisms (see Duration Timing with Style Premia; Timing Bonds with Value, Momentum, and Carry; and A Carry-Trend-Hedge Approach to Duration Timing).

Broadly, our studies have found:

  • Value (measured as deviation from real yield), momentum (prior 12-month returns), and carry (yield-to-worst) were all profitable factors in cross-section municipal bond sector long/short portfolios.
  • Value (measured as deviation from real yield), trend (measured as prior return), and carry (measured as term spread + roll yield) have historically been effective timing signals for U.S. duration exposure.
  • Prior short-term equity returns proved to be an effective signal for near-term returns in U.S. Treasuries (related to the “flight-to-safety premium”).
  • Short-term trend proved effective for high yield bond timing, but the results were vastly determined by performance in 2000-2003 and 2008-2009. While the strategy appeared to still be able to harvest relative carry between high-yield bonds and core fixed income in other environments, a significant proportion of returns came from avoiding large drawdowns in high yield.
  • Short-term cross-section momentum (prior total returns), value (z-score of loss-adjusted yield-to-worst), carry (loss-adjusted yield-to-worst), and 3-year reversals all appeared to offer robust signals for relative selection in fixed income sectors. The time period covered in the study, however, was limited and mostly within a low-inflation regime.
  • Application of momentum, value, carry, and reversal as timing signals proved largely ineffective for generating excess returns.

In this week’s commentary, we want to further contribute to research by introducing a value timing signal for credit.

Finding Value in Credit

Identifying a value signal requires some measure or proxy of an asset’s “fair” value. What can make identifying value in credit so difficult is that there are a number of moving pieces.

Conceptually, credit spreads should be proportional to default rates, recovery rates, and aggregate risk appetite, making determining whether spreads are cheap or expensive rather complicated.  Prior literature typically tackles the problem with one of three major categories of models:

  • Econometric: “Fair value” of credit spreads is modeled through a regression that typically explicitly accounts for default and recovery rates. Inputs are often related to economic and market variables, such as equity market returns, 10-year minus 2-year spreads, corporate leverage, and corporate profitability.  Bottom-up analysis may use metrics such as credit quality, maturity, supply, and liquidity.
  • Merton Model: Based upon the idea the bond holders have sold a put on a company’s asset value. Therefore, options pricing models can be used to calculate a credit spread.  Inputs include the total asset value, asset volatility, and leverage of the firm under analysis.
  • Spread Signal: A simple statistical model derived from credit spread themselves. For example, a rolling z-score of option-adjusted spreads or deviations from real yield.  Other models (e.g. Haghani and Dewey (2016)) have used spread plus real yield versus a long-run constant (e.g. “150 basis points”).

The first method requires a significant amount of economic modeling.  The second approach requires a significant amount of extrapolation from market data.  The third method, while computationally (and intellectually) less intensive, requires a meaningful historical sample that realistically needs to cover at least one full market cycle.

While attractive for its simplicity, there are a number of factors that complicate the third approach.

First, if spreads are measured against U.S. Treasuries, the metric may be polluted by information related to Treasuries due to their idiosyncratic behavior (e.g. scarcity effects and flight-to-safety premiums).  Structural shifts in default rates, recovery rates, and risk appetites may also cause a problem, as spreads may appear unduly thin or wide compared to past regimes.

In light of this, in this piece we will explore a similarly simple-to-calculate spread signal, but one that hopefully addresses some of these short-comings.

Baa vs. Aaa Yields

In order to adjust for these problems, we propose looking at the steepness of the credit curve itself by comparing prime / high-grade yield versus lower-medium grade yields.  For example, we could compare Moody’s Season Aaa Corporate Bond Yield and Moody’s Season Baa Corporate Bond Yield.  In fact, we will use these yields for the remainder of this study.

We may be initially inclined to measure the steepness of the credit curve by taking the difference in yield spreads, which we plot below.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

We can find a stronger mean-reverting signal, however, if we calculate the log-difference in yields.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

We believe this transformation is appropriate for two reasons.  First, the log transformation helps control for the highly heteroskedastic and skewed nature of credit spreads.

Second, it helps capture both the steepness andthe level of the credit curve simultaneously.  For example, a 50-basis-point premium when Aaa yield is 1,000 basis points is very different than when Aaa yield is 100 basis points.  In the former case, investors may not feel any pressure to bear excess risk to achieve their return objectives, and therefore a 50-basis-point spread may be quite thin.  In the latter case, 50 basis points may represent a significant step-up in relative return level in an environment where investors have either low default expectations, high recovery expectations, high risk appetite, or some combination thereof.

Another way of interpreting our signal is that it informs us about the relative decisions investors must make about their expected dispersion in terminal wealth.

Constructing the Value Strategy

With our signal in hand, we can now attempt to time credit exposure.  When our measure signals that the credit curve is historically steep, we will take credit risk.  When our signal indicates that the curve is historically flat we will avoid it.

Specifically, we will construct a dollar-neutral long/short portfolio using the Dow Jones Corporate Bond Index (“DJCORP”) and a constant maturity 5-year U.S. Treasury index (“FV”).   We will calculate a rolling z-score of our steepness measure and go long DJCORP and short FV when the z-score is positive and place the opposite trade when the z-score is negative.

In line with prior studies, we will apply an ensemble approach.  Portfolios are reformed monthly using formation ranging from 3-to-6 years with holding periods ranging from 1-to-6 months.  Portfolio weights for the resulting strategy are plotted below.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research.

We should address the fact that while both corporate bond yield and index data is available back to the 1930s, we have truncated our study to ignore dates prior to 12/1949 to normalize for a post-war period.  It should be further acknowledged that the Dow Jones Corporate Bond index used in this study did not technically exist until 2002.  Prior to that date, the index return tracks a Dow Jones Bond Aggregate, which was based upon four sub-indices: high-grade rails, second-grade rails, public utilities, and industries.  This average existed from 1915 to 1976, when it was replaced with a new average at that point when the number of railway bonds was no longer sufficient to maintain the average.

Below we plot the returns of our long/short strategy.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research. Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

The strategy has an annualized return of 0.84% with a volatility of 3.89%, generating a Sharpe ratio of 0.22.  Of course, long-term return statistics belie investor and manager experience, with this strategy exhibiting at least two periods of decade-plus-long drawdowns.  In fact, the strategy really has just four major return regimes: 1950 to 1970 (-0.24% annualized), 1970 to 1987 (2.59% annualized), 1987 to 2002 (-0.33%), and 2002 to 2019 (1.49% annualized).

Try the strategy out in the wrong environment and we might be in for a lot of pain.

Momentum to the Rescue?

It is no secret that value and momentum go together like peanut butter and jelly. Instead of tweaking our strategy to death in order to improve it, we may just find opportunity in combining it with a negatively correlated signal.

Using an ensemble model, we construct a dollar-neutral long/short momentum strategy that compares prior total returns of DJCORP and FV.  Rebalanced monthly, the portfolios use formation periods ranging from 9-to-15 months and holding periods ranging from 1-to-6 months.

Below we plot the growth of $1 in our value strategy, our momentum strategy, and a 50/50 combination of the two strategies that is rebalanced monthly.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research. Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

The first thing we note is – even without calculating any statistics – the meaningful negative correlation we see in the equity curves of the value and momentum strategies.  This should give us confidence that there is the potential for significant improvement through diversification.

The momentum strategy returns 1.11% annualized with a volatility of 3.92%, generating a Sharpe ratio of 0.29.  The 50/50 combination strategy, however, returns 1.03% annualized with a volatility of just 2.16% annualized, resulting in a Sharpe ratio of 0.48.

While we still see significant regime-driven behavior, the negative regimes now come at a far lower cost.

Conclusion

In this study we introduce a simple value strategy based upon the steepness of the credit curve.  Specifically, we calculated a rolling z-score on the log-difference between Moody’s Seasoned Baa and Aaa yields.  We interpreted a positive z-score as a historically steep credit curve and therefore likely one that would revert.  Similarly, when z-scores were negative, we interpreted the signal as a flat credit curve, and therefore a period during which taking credit risk is not well compensated.

Employing an ensemble approach, we generated a long/short strategy that would buy the Dow Jones Corporate Bond Index and short 5-year U.S. Treasuries when credit appeared cheap and place the opposite trade when credit appeared expensive.  We found that this strategy returned 0.84% annualized with a volatility of 3.89% from 1950 to 2019.

Unfortunately, our value signal generated significantly regime-dependent behavior with decade-long drawdowns.  This not only causes us to question the statistical validity of the signal, but also the practicality of implementing it.

Fortunately, a naively constructed momentum signal provides ample diversification.  While a combination strategy is still highly regime-driven, the drawdowns are significantly reduced.  Not only do returns meaningfully improve compared to the stand-alone value signal, but the Sharpe ratio more-than-doubles.

Unfortunately, our study leveraged a long/short construction methodology.  While this isolates the impact of active returns, long-only investors must cut return expectations of the strategy in half, as a tactical timing model can only half-implement this trade without leverage.  A long-only switching strategy, then, would only be expected to generate approximately 0.5% annualized excess return above a 50% Dow Jones Corporate Bond Index / 50% 5-Year U.S. Treasury index portfolio.

And that’s before adjustments for hindsight bias, trading costs, and manager fees.

Nevertheless, more precise implementation may lead to better results.  For example, our indices neither perfectly matched the credit spreads we evaluated, nor did they match each other’s durations.  Furthermore, while this particular implementation may not survive costs, this signal may still provide meaningful information for other credit-based strategies.

Page 1 of 4

Powered by WordPress & Theme by Anders Norén