Prior research and empirical investment results have shown that portfolio construction choices related to rebalance schedules may have non-trivial impacts on realized performance. We construct long-only indices that provide exposures to popular U.S. equity factors (value, size, momentum, quality, and low volatility) and vary their rebalance schedules to isolate the effects of “rebalance timing luck.” Our constructed indices exhibit high levels of rebalance timing luck, often exceeding 100 basis points annualized, with total impact dependent upon the frequency of rebalancing, portfolio concentration, and the nature of the underlying strategy. As a case study, we replicate popular factor-based index funds and similarly find meaningful performance impacts due to rebalance timing luck. For example, a strategy replicating the S&P Enhanced Value index saw calendar year return differentials above 40% strictly due to the rebalance schedule implemented. Our results suggest substantial problems for analyzing any investment when the strategy, its peer group, or its benchmark is susceptible to performance impacts driven by the choice of rebalance schedule.

The convex payoff profile of trend following strategies naturally lends itself to comparative analysis with option strategies. Unlike options, however, the payout of trend following is not guaranteed.

To compare and contrast the two approaches, we replicate simple trend following strategies with corresponding option straddle strategies.

While trend-following has no explicit up-front cost, it also bears the full brunt of any price reversals. The straddle-based approach, on the other hand, pays an explicit cost to insure against sudden and large reversals.

This transformation of whipsaw risk into an up-front option premium can be costly during strongly trending market environments where the option buyer would have been rewarded more for setting a higher deductible for their implicit insurance policy and paying a lower premium.

From 2005-2020, avoiding this upfront premium was beneficial. The sudden loss of equity markets in March 2020, however, allowed straddle-based approaches to make up for 15-years of relative underperformance in a single month.

Whether an investor wishes to avoid these up-front costs or pay them is ultimately a function of the risks they are willing to bear. As we like to say, “risk cannot be destroyed, only transformed.”

We often repeat the mantra that, “risk cannot be destroyed, only transformed.” While not being able to destroy risk seems like a limitation, the assertion that risk can be transformed is nearly limitless.

With a wide variety of investment options, investors have the ability to mold, shape, skew, and shift their risks to fit their preferences and investing requirements (e.g. cash flows, liquidity, growth, etc.).

The payoff profile of a strategy is a key way in which this transformation of risk manifests, and the profile of trend following is one example that we have written much on historically. The convex payoff of many long/short trend following strategies is evident from the historical payoff diagram.

Source: Newfound Research. Payoff Diversification (February 10^{th}, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index. The momentum portfolio is rebalanced monthly and selects the asset with the highest prior 12-month returns whereas the buy-and-hold variation is allowed to drift over the 1-year period.The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.

This characteristic “V” shape in the diagram is reminiscent of an option straddle, where an investor buys a put and call option of the same maturity struck at the same price. This position allows the investor to profit if the price of the underlying security moves significantly in either direction, but they pay for this opportunity in the option premiums.

Source: theoptionsguide.com

The similarity of these payoff profiles is no coincidence. As we demonstrated in Trend – Convexity and Premium (February 11^{th}, 2019), simple total return trend following signals coarsely approximate the delta of the straddle. For those less familiar with the parlance of options, delta is the sensitivity in the value of the options to changes in the underlying stock. For example, if delta is +1, then the value of the option position will match price changes in the underlying dollar-for-dollar. If delta is -1, then the position will lose $1 for every dollar gained in the underlying and vice versa (i.e. the position is effectively short).

How does this connection arise? Consider a naïve S&P 500 trend strategy that rebalances monthly and uses 12-month total returns as a trend signal, buying when prior returns are positive and shorting when prior returns are negative. The key components of this strategy are today’s S&P 500 level and the level 12 months ago.

Now consider a strategy that buys a 1-month straddle with a strike equal to the level of the S&P 500 12 months ago. When the current level is above the strike, the strategy’s delta will be positive and when the level is below the strike, the delta will be negative. What we can see is that the sensitivity of our options trade to changes in the S&P 500 will match the sign of the trend strategy!

There are two key differences, however. First, our trend strategy was designed to always be 100% long or 100% short, whereas the straddle’s sensitivity can vary between -100% and 100%. Second, the trend strategy cannot change its exposure intramonth whereas the straddle will. In fact, if price starts above the strike price (a positive trend) but ultimately ends below – so far as it is sufficiently far that we can make up for the premium paid for our options – the straddle can still profit!

In this commentary, we will compare and contrast the trend and option-based approaches for a variety of lookback horizons.

Methodology and Data

For this analysis, we will use the S&P 500 index for equity returns, the iShares Short-term U.S. Treasury Bond ETF (ticker: SHV) as the risk-free rate, and monthly options data on the S&P 500 (SPX options).

The long/short trend equity strategy looks at total returns of equities over a given number of months. If this return is positive, the strategy invests in equities for the following month. If the return is negative, the strategy shorts equities for the following month and earns the short-term Treasury rate on the cash. The strategy is rebalanced monthly on the third Friday of each month to coincide with the options expiration dates.

For the (semi-equivalent) straddle replication, at the end of each month we purchase a call option and a put option struck at the level of the S&P 500 at the beginning of the lookback window of the trend following strategy. We can also back out the strike price using the current trend signal value and S&P 500. For example, if the trend signal is 25% and the S&P 500 is trading at $3000, we would set the strike of the options at $2400.

The options account is assumed to be fully cash collateralized. Any premium is paid on the options roll date, interest is earned on the remaining account balance, and the option payout is realized on the next roll date.

To value the options, we employ Black-Scholes pricing on an implied volatility surface derived from available out-of-the money options. Specifically, on a given day we fit a parabola to the implied variances versus log-moneyness (i.e. log(strike/price)) of the options for each time to maturity.

In prior research, we created straddle-derived trend-following models by purchasing S&P 500 exposure in proportion to the delta of the strategy. To calculate delta, we had previously priced the options using 21-day realized volatility as a proxy for implied volatility. This generally leads to over-pricing the options during crisis times and underpricing during more tame market environments, especially for deeper out of the money puts. In this commentary we are actually purchasing the straddles and holding them for one month.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Straddle vs. Trend Following

Below we plot the ratio of the equity curves for the straddle strategies versus their corresponding trend following strategies. When the line is increasing, the straddle strategy is out-performing, and when the line is decreasing the trend strategy is out-performing.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

We can see, generally, that trend following out-performed the explicit purchase of options for almost all lookback periods for the majority of the 15-year test period.

It is only with the most recent expiration – March 20, 2020 – that many of the straddle strategies came to out-perform their respective trend strategies. With the straddle strategy, we pay an explicit premium to help insure our position against sudden and large intra-month price reversals. This did not occur very frequently during the 15 year history, but was very valuable protection in March when the trend strategies were largely still long coming off markets hitting all-time-highs in late February.

Shorter-term lookbacks fared particularly well during that month, as the trend following strategy was in a long position on the February 2020 options expiry date, and the straddles set by the short-term lookback window were relatively cheap from a historical perspective.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Note the curious case of the 14-month lookback. Entering March, the S&P 500 was +45% over a 14-month lookback (almost perfectly anchored to December 2018 lows). Therefore, the straddle was struck so deep in the money that it did not create any protection against the market’s sudden and large drawdown.

Prior to March 2020, only the 8- and 15-month lookback window strategies had outperformed their corresponding trend following strategies. In both cases, it was just barely and just recently.

Another interesting point to note is that longer-term straddle strategies (lookbacks greater than 9 months) shared similar movements during many periods while shorter-term lookbacks (3-6 months) showed more dispersion over time.

Overall, many of the straddles exhibit more “crisis alpha” than their trend following counterparts. This is an explicit risk we pay to hedge with the straddle approach and a fact we will discuss in more detail later on.

How Equity Movements Affect Straddles

Before we move into a discussion of how we can frame the straddle strategies, it will be helpful to revisit how straddles are affected by changing equity prices and how this effect changes with different lookback windows for the strategies.

Consider the delta of a straddle versus how far away price is from the strike (normalized by volatility).

Naively, we might consider that the longer our trend lookback window – and therefore the further back in time we set our strike price – the further away from the strike that price has had the opportunity to move. Consider two extremes: a strike set equal to the price of the S&P 500 10 years ago versus one set a day ago. We would expect that today’s price is much closer to that from a day ago than 10 years ago.

Therefore, for a longer lookback horizon we might expect that there is a greater chance that the straddle is currently deeper in the money, leading to a delta closer to +/- 1. In the case of straddles struck at index levels more recently realized, it is more likely that price is close to at the money, leading to deltas closer to 0.

This also means that while the trend following strategy is taking a binary bet, the straddle is able to modulate exposure to equity moves when the trend is less pronounced. For example, if a 12-month trend signal is +1%, the trend model will retain a +1 exposure while the delta of the straddle may be closer to 0.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Additionally, when the delta of a straddle is closer to zero, its gamma is higher. Gamma reflects how quickly the straddle’s sensitivity to changes in the underlying asset – i.e. the delta – will change. The trend strategy has no intra-month gamma, as once the position is set it remains static until the next rebalance.

As we generally expect the straddles struck longer ago to be deeper in the money than those struck more recently, we would also expect them to have lower gamma.

This also serves to nicely connect trend speed with the length of the lookback window. Shorter lookback windows are associated with trend models that change signals more rapidly while longer lookback windows are slower. Given that a total return trend signal can be thought of as the average of daily log returns, we would expect a longer lookback to react more slowly to recent changes than a shorter lookback because the longer lookback is averaging over more data.

But if we think of it through the lens of options – that the shorter lookback is coarsely replicating the delta of a straddle struck more recently – then the ideas of speed and gamma become linked.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

The Straddle Strategy as an Insurance Policy

One of the key differences between the trend strategy and the straddle is that the straddle has features that act as insurance against price reversals. As an example, consider a case where the trend strategy has a positive signal. To first replicate the payoff, the straddle strategy buys an in-the-money call option. This is the first form of insurance, as the total amount this position can lose is the premium paid for the option, while the trend strategy can lose significantly more.

The straddle strategy goes one step further, though, and would also buy a put option. So not only does it have a fixed loss on the call if price reverses course, but it can also profit if it reverses sufficiently.

One way to model the straddle strategies, then, is as insurance policies with varying deductibles. There is an up-front premium that is paid, and the strategy does not pay out until the deductible – the distance that the option is struck in the money – is met.

When the deductible is high – that is, when the trend is very strong in either direction – the premium for the insurance policy tends to be low. On the other hand, a strategy that purchases at the money straddles would be equivalent to buying insurance with no deductible.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

On average, the 3-month straddle strategy pays annual premiums of about 14% for the benefit of only having to wait for a price reversal of 6% before protection kicks in. Toward the other end of the spectrum, the 12-month strategy has an annual average premium of under 6% with a 16% deductible.

We can also visualize how often each straddle strategy pays higher premiums by looking at the deltas of the straddles over time. When these values deviate significantly from +1 or -1, then the straddle is lowering its insurance deductible in favor of paying more in premium. When the delta is nearly +1 or -1, then the straddle is buying higher deductible insurance that will take a larger whipsaw to payout.

The charts below show the delta over time in the straddle strategies vs. the trend allocation for 3-, 6-, and 12-month lookback windows.

There is significant overlap, especially as trends get longer. The differences in the deltas in the 3-month straddle model highlight its tradeoff between lower deductibles and higher insurance premiums. However, this leads it to be more adaptive at capitalizing on equity moves in the opposite direction that lead to losses in the binary trend-following model.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

The chart below shows the annualized performance of the straddle strategies when they underperform trend following (premium) and the annualized performance of the straddle strategies when they outperform trend following (payout). As the lookback window increases, both of these figures generally decline in absolute value.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Even though we saw previously that the 3-month straddle strategy had the highest annual premium, its overall payout when it outperforms trend following is substantial. The longer lookbacks do not provide as much of a buffer due to their higher deductible levels, despite their lower premiums.

When the naïve trend strategy is right, it captures the full price change with no up-front premium. When it is wrong, however, it bears the full brunt of losses.

With the straddle strategy, the cost is paid up front for the benefit to not only protect against price reversals, but even potentially profit from them.

As a brief aside, a simpler options strategy with similar characteristics would be to buy only either a call option or put option depending on the trend signal. This strategy would not profit from a reversion of the trend, but it would cap losses. Comparing it to the straddle strategies highlights the cost and benefit of the added protection.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.

Buying only puts or calls generally helped both of the strategies shown in the chart. This came in reduced premiums over a time period when trimming premiums whenever possible paid off, especially for the 12-month lookback strategy. However, there are some notable instances where the extra protection of the straddle was very helpful, e.g. August 2011 and late 2014 for the 3-month lookback strategy and March 2020 for both.

Despite the similarities between the options and trend strategies, this difference in when the payment is made – either up-front in the straddle strategy or after-the fact in whipsaw in the trend following strategy – ends up being the key differentiator.

The relative performance of the strategies shows that investors mostly benefitted over the past 15 years by bearing this risk of whipsaw and large, sudden price-reversals. However, as the final moths of data indicates, option strategies can provide benefits that option-like strategies cannot.

Ultimately, the choice between risks is up to investor preferences, and a diversified approach that pairs strategies different convex strategies such as trend following and options is likely most appropriate.

Conclusion

The convex payoff profile of trend following strategies naturally lends itself to comparative analysis with option strategies, which also have a convex payoff profile. In fact, we would argue – as we have many times in the past – that trend following strategies coarsely replicate the delta profile of option straddles.

In this commentary, we sought to make that connection more explicit by building option straddle strategies that correspond to a naïve trend following strategies of varying lookback lengths.

While the trend following approach has no explicit up-front cost, it risks bearing the full brunt of sudden and large price reversals. With the straddle-based approach, an investor explicitly pays an up-front premium to insure against these risks.

When evaluated through the lens of an insurance policy, the straddle strategy dynamically adjusts its associated premium and deductible over time. When trends are strong, for example, premiums paid tend to be lower, but the cost is a higher deductible. Conversely, when trends are flat, the premium is much higher, but the deductible is much lower.

We found that over the 2005-2020 test period, the cost of the option premiums exceeded the cost of whipsaw in the trend strategies in almost all cases. That is, until March 2020, when a significant and sudden market reversal allowed the straddle strategies to make up for 15 years of relative losses in a single month.

As we like to say: risk cannot be destroyed, only transformed. In this case, the trend strategy was willing to bear the risk of large intra-month price reversals to avoid paying any up-front premium. This was a benefit to the trend investor for 15 years. And then it wasn’t.

By constructing straddle strategies, we believe that we can better measure the trade-offs of trend following versus the explicit cost of insurance. While trend following may approximate the profile of a straddle, it sacrifices some of the intra-month insurance qualities to avoid an up-front premium. Whether this risk trade-off is ultimately worth it depends upon the risks an investor is willing to bear.

In past research we have explored the potential benefits of how-based diversification through the lens of pay-off functions.

Specifically, we explored how strategic rebalancing created a concave payoff while momentum / trend-following created a convex payoff. By combining these two approaches, total portfolio payoff became more neutral to the dispersion in return of underlying assets.

We have also spent considerable time exploring when-based diversification through our writing on rebalance timing luck.

To manage rebalance timing luck, we advocate for a tranching methodology that can be best distilled as rebalancing “a little but frequently.”

Herein, we demonstrate that the resulting payoff profile of a tranche-based rebalancing strategy closely resembles that of a portfolio that combines both strategic rebalancing and momentum/trend-following.

While we typically think of tranching as simply a way to de-emphasize the impact of a specific rebalancing date choice, this research suggests that for certain horizons, tranching may also be effective because it naturally introduces momentum/trend-following into the portfolio.

In Payoff Diversification (February 10^{th}, 2020), we explored the idea of combining concave and convex payoff profiles. Specifically, we demonstrated that rebalancing a strategic asset allocation was inherently concave (i.e. mean reversionary) whereas trend-following and momentum was inherently convex. By combining the two approaches together, we could neutralize the implicit payoff profile of our portfolio with respect to performance of the underlying assets.

Source: Newfound Research. Payoff Diversification (February 10^{th}, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index. The rebalanced variation is rebalanced at the end of each month whereas the buy-and-hold variation is allowed to drift over the 1-year period. The momentum portfolio is rebalanced monthly and selects the asset with the highest prior 12-month returns whereas the buy-and-hold variation is allowed to drift over the 1-year period.The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.

The intuition behind why rebalancing is inherently mean-reversionary is fairly simple. Consider a simple 50% stock / 50% bond portfolio. Between rebalances, this allocation will drift based upon the relative performance of stocks and bonds. When we rebalance, to right-size our relative allocations we must sell the asset that has out-performed and buy the one that has under-performed. “Sell your winners and buy your losers” certainly sounds mean-reversionary to us.

In fact, one way to think about a rebalance is as the application of a long/short overlay on your portfolio. For example, if the 50/50 portfolio drifted to a 45/55, we could think about rebalancing as holding the 45/55 and overlaying it with a +5/-5 long/short portfolio. This perspective explicitly expresses the “buy the loser, short the winner” strategy. In other words, we’re actively placing a trade that benefits when future returns between the two assets reverts.

While we may not be actively trying to express a view or forecast about future returns when we rebalance, we should consider the performance implications of our choice based upon whether the relative performance of these two assets continues to expand or contract:

Relative Performance Expands

Relative Performance Contracts

Rebalance

–

+

Do Not Rebalance

+

–

Our argument in Payoff Diversification was that by combining strategic rebalancing and momentum / trend following, we could help neutralize this implicit bet.

What we can also see in the table above, though, is that the simple act of not rebalancing benefits from a continuation of relative returns just as trend/momentum does.

Let’s keep that in the back of our minds and switch gears, for a moment, to portfolio tranching. Frequent readers of our research notes will know we have spent considerable time researching the implications of rebalance timing luck. We won’t go into great detail here, but the research can be broadly summarized as, “when you rebalance your portfolio can have meaningful implications for performance.”

Given the discussion above, why that result holds true follows naturally. If two people hold 60/40 portfolios but rebalance them at different times in the year, their results will diverge based upon the relative performance of stocks and bonds between the rebalance periods.

As a trivial example, consider two 60/40 investors who each rebalance once a year. One chooses to rebalance every March and one chooses to rebalance every September. In 2008, the September investor would have re-upped his allocation to equities only to watch them sell-off for the next six months. The March investor, on the other hand, would have rebalanced earlier that year and her equity allocation would have drifted lower as the 2008 crisis wore on.

Even better, she would rebalance in March 2009, re-upping her equity allocation near the market bottom and almost perfectly timing the performance mean-reversion that would unfold. The September investor, on the other hand, would be underweight equities due to drift at this point.

Below we plot hypothetical drifted equity allocations for these investors over time.

Source: Tiingo. Calculations by Newfound Research.

The implications are that rebalancing can imbed large, albeit unintentional, market-timing bets.

The whole concept of tranching can be summarized with the phrase: “a little but frequently.” In other words, rebalance your portfolio more frequently, but only make small changes. As an example, rather than rebalance once a year, we could rebalance 1/12^{th} of our portfolio every month. If our portfolio had drifted from a 60/40 to a 55/45, rather than rebalancing all the way back, we would just correct 1/12^{th} of the drift, trading to a 55.42/44.58.^{1}

Another way to think about this approach is as a collection of sub-portfolios. For example, if we elected to implement a 12-month tranche, we might think of it as 12 separate sub-portfolios, each of which rebalances every 12 months but does so at the end of a different month (e.g. one rebalances in January, one in February, et cetera).

But why does this approach work? It helps de-emphasize the mean-reversion bet for any given rebalance date. We can see this by constructing the same payoff plots as before for different tranching speeds. The 1-month tranche reflects a full monthly rebalance; a 3-month tranche reflects rebalancing 33.33% of the portfolio; a 6-month tranche reflects rebalancing 16.66% of the portfolio each month; et cetera.

Source: Newfound Research. Payoff Diversification (February 10^{th}, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index. The rebalanced variation is rebalanced partially at the end of each month whereas the buy-and-hold variation is allowed to drift over the 1-year period. The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.

Note how the concave payoff function appears to “unbend” and the 12-month tranche appears similar in shape to payoff of the 90% strategic rebalance / 10% momentum strategy portfolio we plotted in the introduction.

Why might this be the case? Recall that not rebalancing can be effective so long as there is continuation (i.e. momentum / trend) in the relative performance between stocks and bonds. By allowing our portfolio to drift, our portfolio will naturally tilt itself towards the out-performing asset. Furthermore, drift serves as an interesting amplifier to the momentum signal: the more persistent the relative out-performance, and the larger the relative out-performance in magnitude, the greater the resulting tilt.

While tranching naturally helps reduce rebalance timing luck by de-emphasizing each specific rebalance, we can also see that we may be able to naturally embed momentum into our process.

Conclusion

In portfolio management research, the answer we find is often a reflection of the angle by which a question is asked.

For example, in prior research notes, we have spent considerable time documenting the impact of rebalance timing luck in strategic asset allocation, tactical asset allocation, and factor investing. The simple choice of when, though often overlooked in analysis, can have a significant impact upon realized results. Therefore, in order to de-emphasize the choice of when, we introduce portfolio tranching.

We have also spent a good deal of time discussing the how axis of diversification (i.e. process). Not only have we research this topic through the lens of ensemble techniques, but we have also explored it through the payoff profiles generated by each process. We find that by combining diversifying concave and convex profiles – e.g. mean-reversion and momentum – we can potentially create a return profile that is more robust to different outcomes.

Herein, we found that tranching the rebalance of a strategic asset allocation may, in fact, allow us to naturally embed momentum without having to explicitly introduce a momentum strategy. What we find, then, is that the two topics may not actually be independent avenues of research about when and how. Rather, they may just different ways of exploring how to diversify the impacts of convexity and concavity in portfolio construction.

In past research notes we have explored the impact of rebalance timing luck on strategic and tactical portfolios, even using our own Systematic Value methodology as a case study.

In this note, we generate empirical timing luck estimates for a variety of specifications for simplified value, momentum, low volatility, and quality style portfolios.

Relative results align nicely with intuition: higher concentration and less frequent rebalancing leads to increasing levels of realized timing luck.

For more reasonable specifications – e.g. 100 stock portfolios rebalanced semi-annually – timing luck ranges between 100 and 400 basis points depending upon the style under investigation, suggesting a significant risk of performance dispersion due only to when a portfolio is rebalanced and nothing else.

The large magnitude of timing luck suggests that any conclusions drawn from performance comparisons between smart beta ETFs or against a standard style index may be spurious.

We’ve written about the concept of rebalance timing luck a lot. It’s a cowbell we’ve been beating for over half a decade, with our first article going back to August 7^{th}, 2013.

As a reminder, rebalance timing luck is the performance dispersion that arises from the choice of a particular rebalance date (e.g. semi-annual rebalances that occur in June and December versus March and September).

We’ve empirically explored the impact of rebalance timing luck as it relates to strategic asset allocation, tactical asset allocation, and even used our own Systematic Value strategy as a case study for smart beta. All of our results suggest that it has a highly non-trivial impact upon performance.

This summer we published a paper in the Journal of Index Investing that proposed a simple solution to the timing luck problem: diversification. If, for example, we believe that our momentum portfolio should be rebalanced every quarter – perhaps as an optimal balance of cost and signal freshness – then we proposed splitting our capital across the three portfolios that spanned different three-month rebalance periods (e.g. JAN-APR-JUL-OCT, FEB-MAY-AUG-NOV, MAR-JUN-SEP-DEC). This solution is referred to either as “tranching” or “overlapping portfolios.”

The paper also derived a formula for estimating timing luck ex-ante, with a simplified representation of:

Where L is the timing luck measure, T is turnover rate of the strategy, F is how many times per year the strategy rebalances, and S is the volatility of a long/short portfolio that captures the difference of what a strategy is currently invested in versus what it could be invested in if the portfolio was reconstructed at that point in time.

Without numbers, this equation still informs some general conclusions:

Higher turnover strategies have higher timing luck.

Strategies that rebalance more frequently have lower timing luck.

Strategies with a less constrained universe will have higher timing luck.

Bullet points 1 and 3 may seem similar but capture subtly different effects. This is likely best illustrated with two examples on different extremes. First consider a very high turnover strategy that trades within a universe of highly correlated securities. Now consider a very low turnover strategy that is either 100% long or 100% short U.S. equities. In the first case, the highly correlated nature of the universe means that differences in specific holdings may not matter as much, whereas in the second case the perfect inverse correlation means that small portfolio differences lead to meaningfully different performance.

L, in and of itself, is a bit tricky to interpret, but effectively attempts to capture the potential dispersion in performance between a particular rebalance implementation choice (e.g. JAN-APR-JUL-OCT) versus a timing-luck-neutral benchmark.

After half a decade, you’d would think we’ve spilled enough ink on this subject.

But given that just about every single major index still does not address this issue, and since our passion for the subject clearly verges on fever pitch, here comes some more cowbell.

Equity Style Portfolio Definitions

In this note, we will explore timing luck as it applies to four simplified smart beta portfolios based upon holdings of the S&P 500 from 2000-2019:

Value: Sort on earnings yield.

Momentum: Sort on prior 12-1 month returns.

Low Volatility: Sort on realized 12-month volatility.

Quality: Sort on average rank-score of ROE, accruals ratio, and leverage ratio.

Quality is a bit more complicated only because the quality factor has far less consistency in accepted definition. Therefore, we adopted the signals utilized by the S&P 500 Quality Index.

For each of these equity styles, we construct portfolios that vary across two dimensions:

Number of Holdings: 50, 100, 150, 200, 250, 300, 350, and 400.

Frequency of Rebalance: Quarterly, Semi-Annually, and Annually.

For the different rebalance frequencies, we also generate portfolios that represent each possible rebalance variation of that mix. For example, Momentum portfolios with 50 stocks that rebalance annually have 12 possible variations: a January rebalance, February rebalance, et cetera. Similarly, there are 12 possible variations of Momentum portfolios with 100 stocks that rebalance annually.

By explicitly calculating the rebalance date variations of each Style x Holding x Frequency combination, we can construct an overlapping portfolios solution. To estimate empirical annualized timing luck, we calculate the standard deviation of monthly return dispersion between the different rebalance date variations of the overlapping portfolio solution and annualize the result.

Empirical Timing Luck Results

Before looking at the results plotted below, we would encourage readers to hypothesize as to what they expect to see. Perhaps not in absolute magnitude, but at least in relative magnitude.

For example, based upon our understanding of the variables affecting timing luck, would we expect an annually rebalanced portfolio to have more or less timing luck than a quarterly rebalanced one?

Should a more concentrated portfolio have more or less timing luck than a less concentrated variation?

Which factor has the greatest risk of exhibiting timing luck?

Source: Sharadar. Calculations by Newfound Research.

To create a sense of scale across the styles, below we isolate the results for semi-annual rebalancing for each style and plot it.

Source: Sharadar. Calculations by Newfound Research.

In relative terms, there is no great surprise in these results:

More frequent rebalancing limits the risk of portfolios changing significantly between rebalance dates, thereby decreasing the impact of timing luck.

More concentrated portfolios exhibit larger timing luck.

Faster-moving signals (e.g. momentum) tend to exhibit more timing luck than more stable, slower-moving signals (e.g. low volatility).

What is perhaps the most surprising is the sheer magnitude of timing luck. Consider that the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality portfolios all hold 100 securities and are rebalanced semi-annually. Our study suggests that timing luck for such approaches may be as large as 2.5%, 4.4%, 1.1%, and 2.0% respectively.

But what does that really mean? Consider the realized performance dispersion of different rebalance date variations of a Momentum portfolio that holds the top 100 securities in equal weight and is rebalanced on a semi-annual basis.

Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

The 4.4% estimate of annualized timing luck is a measure of dispersion between each underlying variation and the overlapping portfolio solution. If we isolate two sub-portfolios and calculate rolling 12-month performance dispersion, we can see that the difference can be far larger, as one might exhibit positive timing luck while the other exhibits negative timing luck. Below we do precisely this for the APR-OCT and MAY-NOV rebalance variations.

Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

In fact, since these variations are identical in every which way except for the date on which they rebalance, a portfolio that is long the APR-OCT variation and short the MAY-NOV variation would explicitly capture the effects of rebalance timing luck. If we assume the rebalance timing luck realized by these two portfolios is independent (which our research suggests it is), then the volatility of this long/short is approximately the rebalance timing luck estimated above scaled by the square-root of two.

Derivation: For variations v_{i} and v_{j} and overlapping-portfolio solution V, then:

Thus, if we are comparing two identically-managed 100-stock momentum portfolios that rebalance semi-annually, our 95% confidence interval for performance dispersion due to timing luck is +/- 12.4% (2 x SQRT(2) x 4.4%).

Even for more diversified, lower turnover portfolios, this remains an issue. Consider a 400-stock low-volatility portfolio that is rebalanced quarterly. Empirical timing luck is still 0.5%, suggesting a 95% confidence interval of 1.4%.

S&P 500 Style Index Examples

One critique of the above analysis is that it is purely hypothetical: the portfolios studied above aren’t really those offered in the market today.

We will take our analysis one step further and replicate (to the best of our ability) the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality indices. We then created different rebalance schedule variations. Note that the S&P 500 Low Volatility index rebalances quarterly, so there are only three possible rebalance variations to compute.

Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

We see a meaningful dispersion in terminal wealth levels, even for the S&P 500 Low Volatility index, which appears at first glance in the graph to have little impact from timing luck.

Minimum Terminal Wealth

Maximum Terminal Wealth

Enhanced Value

$4.45

$5.45

Momentum

$3.07

$4.99

Low Volatility

$6.16

$6.41

Quality

$4.19

$5.25

We should further note that there does not appear to be one set of rebalance dates that does significantly better than the others. For Value, FEB-AUG looks best while JUN-DEC looks the worst; for Momentum it’s almost precisely the opposite.

Furthermore, we can see that even seemingly closely related rebalances can have significant dispersion: consider MAY-NOV and JUN-DEC for Momentum. Here is a real doozy of a statistic: at one point, the MAY-NOV implementation for Momentum is down -50.3% while the JUN-DEC variation is down just -13.8%.

These differences are even more evident if we plot the annual returns for each strategy’s rebalance variations. Note, in particular, the extreme differences in Value in 2009, Momentum in 2017, and Quality in 2003.

Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

Conclusion

In this study, we have explored the impact of rebalance timing luck on the results of smart beta / equity style portfolios.

We empirically tested this impact by designing a variety of portfolio specifications for four different equity styles (Value, Momentum, Low Volatility, and Quality). The specifications varied by concentration as well as rebalance frequency. We then constructed all possible rebalance variations of each specification to calculate the realized impact of rebalance timing luck over the test period (2000-2019).

In line with our mathematical model, we generally find that those strategies with higher turnover have higher timing luck and those that rebalance more frequently have less timing luck.

The sheer magnitude of timing luck, however, may come as a surprise to many. For reasonably concentrated portfolios (100 stocks) with semi-annual rebalance frequencies (common in many index definitions), annual timing luck ranged from 1-to-4%, which translated to a 95% confidence interval in annual performance dispersion of about +/-1.5% to +/-12.5%.

The sheer magnitude of timing luck calls into question our ability to draw meaningful relative performance conclusions between two strategies.

We then explored more concrete examples, replicating the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality indices. In line with expectations, we find that Momentum (a high turnover strategy) exhibits significantly higher realized timing luck than a lower turnover strategy rebalanced more frequently (i.e. Low Volatility).

For these four indices, the amount of rebalance timing luck leads to a staggering level of dispersion in realized terminal wealth.

“But Corey,” you say, “this only has to do with systematic factor managers, right?”

Consider that most of the major equity style benchmarks are managed with annual or semi-annual rebalance schedules. Good luck to anyone trying to identify manager skill when your benchmark might be realizing hundreds of basis points of positive or negative performance luck a year.

We have shown previously that it is possible to time factors using value and momentum but that the benefit is not large.

By constructing a simple model for factor timing, we examine what accuracy would be required to do better than a momentum-based timing strategy.

While the accuracy required is not high, finding the system that achieves that accuracy may be difficult.

For investors focused on managing the risks of underperformance – both in magnitude and frequency – a diversified factor portfolio may be the best choice.

Investors seeking outperformance will have to bear more concentration risk and may be open to more model risk as they forego the diversification among factors.

A few years ago, we began researching factor timing – moving among value, momentum, low volatility, quality, size etc. – with the hope of earning returns in excess not only of the equity market, but also of buy-and-hold factor strategies.

To time the factors, our natural first course of action was to exploit the behavioral biases that may create the factors themselves. We examined value and momentum across the factors and used these metrics to allocate to factors that we expected to outperform in the future.

The results were positive. However, taking into account transaction costs led to the conclusion that investors were likely better off simply holding a diversified factor portfolio.

We then looked at ways to time the factors using the business cycle.

The results in this case were even less convincing and were a bit too similar to a data-mined optimal solution to instill much faith going forward.

But this evidence does not necessarily remove the temptation to take a stab at timing the factors, especially since explicit transactions costs have been slashed for many investors accessing long-only factors through ETFs.Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

After all, there is a lot to gain by choosing the right factors. For example, in the first 9 months of 2019, the spread between the best (Quality) and worst (Value) performing factors was nearly 1,000 basis points (“bps”). One month prior, that spread had been double!

In this research note, we will move away from devising a systematic approach to timing the factors (as AQR asserts, this is deceptively difficult) and instead focus on what a given method would have to overcome to achieve consistent outperformance.

Benchmarking Factor Timing

With all equity factor strategies, the goal is usually to outperform the market-cap weighted equity benchmark.

Since all factor portfolios can be thought of as a market cap weighted benchmark plus a long/short component that captures the isolated factor performance, we can focus our study solely on the long/short portfolio.

Using the common definitions of the factors (from Kenneth French and AQR), we can look at periods over which these self-financing factor portfolios generate positive returns to see if overlaying them on a market-cap benchmark would have added value over different lengths of time.^{1}

We will also include the performance of an equally weighted basket of the four factors (“Blend”).

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The persistence of factor outperformance over one-month periods is transient. If the goal is to outperform the most often, then the blended portfolio satisfies this requirement, and any timing strategy would have to be accurate enough to overcome this already existing spread.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The results for the blended portfolio are so much better than the stand-alone factors because the factors have correlations much lower than many other asset classes, allowing even naïve diversification to add tremendous value.

The blended portfolio also cuts downside risk in terms of returns. If the timing strategy is wrong, and chooses, for example, momentum in an underperforming month, then it could take longer for the strategy to climb back to even. But investors are used to short periods of underperformance and often (we hope) realize that some short-term pain is necessary for long-term gains.

Looking at the same analysis over rolling 1-year periods, we do see some longer periods of factor outperformance. Some examples are quality in the 1980s, value in the mid-2000s, momentum in the 1960s and 1990s, and size in the late-1970s.

However, there are also decent stretches where the factors underperform. For example, the recent decade for value, quality in the early 2010s, momentum sporadically in the 2000s, and size in the 1980s and 1990s. If the timing strategy gets stuck in these periods, then there can be a risk of abandoning it.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

Again, a blended portfolio would have addressed many of these underperforming periods, giving up some of the upside with the benefit of reducing the risk of choosing the wrong factor in periods of underperformance.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

And finally, if we extend our holding period to three years, which may be used for a slower moving signal based on either value or the business cycle, we see that the diversified portfolio still exhibits outperformance over the most rolling periods and has a strong ratio of upside to downside.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The diversified portfolio stands up to scrutiny against the individual factors but could a generalized model that can time the factors with a certain degree of accuracy lead to better outcomes?

Generic Factor Timing

To construct a generic factor timing model, we will consider a strategy that decides to hold each factor or not with a certain degree of accuracy.

For example, if the accuracy is 50%, then the strategy would essentially flip a coin for each factor. Heads and that factor is included in the portfolio; tails and it is left out. If the accuracy is 55%, then the strategy will hold the factor with a 55% probability when the factor return is positive and not hold the factor with the same probability when the factor return is negative. Just to be clear, this strategy is constructed with look-ahead bias as a tool for evaluation.

All factors included in the portfolio are equally weighted, and if no factors are included, then the returns is zero for that period.

This toy model will allow us to construct distributions to see where the blended portfolio of all the factors falls in terms of frequency of outperformance (hit rate), average outperformance, and average underperformance. The following charts show the percentiles of the diversified portfolio for the different metrics and model accuracies using 1,000 simulations.^{2}

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

In terms of hit rate, the diversified portfolio behaves in the top tier of the models over all time periods for accuracies up to about 57%. Even with a model that is 60% accurate, the diversified portfolio was still above the median.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average underperformance, the diversified portfolio also did very well in the context of these factor timing models. The low correlation between the factors leads to opportunities for the blended portfolio to limit the downside of individual factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average outperformance, the diversified portfolio did much worse than the timing model over all time horizons. We can attribute this also to the low correlation between the factors, as choosing only a subset of factors and equally weighting them often leads to more extreme returns.

Overall, the diversified portfolio manages the risks of underperformance, both in magnitude and in frequency, at the expense of sacrificing outperformance potential. We saw this in the first section when we compared the diversified portfolio to the individual factors.

But if we want to have increased return potential, we will have to introduce some model risk to time the factors.

Checking in on Momentum

Momentum is one model-based way to time the factors. Under our definition of accuracy in the toy model, a 12-1 momentum strategy on the factors has an accuracy of about 56%. While the diversified portfolio exhibited some metrics in line with strategies that were even more accurate than this, it never bore concentration risk: it always held all four factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For the hit rate percentiles of the momentum strategy, we see a more subdued response. Momentum does not win as much as the diversified portfolio over the different time periods.

But not winning as much can be fine if you win bigger when you do win.

The charts below show that momentum does indeed have a higher outperformance percentile but with a worse underperformance percentile, especially for 1-month periods, likely due to mean reversionary whipsaw.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

While momentum is definitely not the only way to time the factors, it is a good baseline to see what is required for higher average outperformance.

Now, turning back to our generic factor timing model, what accuracy would you need to beat momentum?

Sharpening our Signal

The answer is: not a whole lot. Most of the time, we only need to be about 53% accurate to beat the momentum-based factor timing.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.

The caveat is that this is the median performance of the simulations. The accuracy figure climbs closer to 60% if we use the 25^{th} percentile as our target.

While these may not seem like extremely high requirements for running a successful factor timing strategy, it is important to observe that not many investors are doing this. True accuracy may be hard to discover, and sticking with the system may be even harder when the true accuracy can never be known.

Conclusion

If you made it this far looking for some rosy news on factor timing or the Holy Grail of how to do it skillfully, you may be disappointed.

However, for most investors looking to generate some modest benefits relative to market-cap equity, there is good news. Any signal for timing factors does not have to be highly accurate to perform well, and in the absence of a signal for timing, a diversified portfolio of the factors can lead to successful results by the metrics of average underperformance and frequency of underperformance.

For those investors looking for higher outperformance, concentration risk will be necessary.

Any timing strategy on low correlation investments will generally forego significant diversification in the pursuit of higher returns.

While this may be the goal when constructing the strategy, we should always pause and determine whether the potential benefits outweigh the costs. Transaction costs may be lower now. However, there are still operational burdens and the potential stress caused by underperformance when a system is not automated or when results are tracked too frequently.

Factor timing may be possible, but timing and tactical rotation may be better suited to scenarios where some of the model risk can be mitigated.

## Straddles and Trend Following

By Nathan Faber

On May 11, 2020

In Momentum, Portfolio Construction, Risk Management, Trend, Weekly Commentary

This post is available as a PDF download here.## Summary

We often repeat the mantra that, “risk cannot be destroyed, only transformed.” While not being able to destroy risk seems like a limitation, the assertion that risk can be transformed is nearly limitless.

With a wide variety of investment options, investors have the ability to mold, shape, skew, and shift their risks to fit their preferences and investing requirements (e.g. cash flows, liquidity, growth, etc.).

The payoff profile of a strategy is a key way in which this transformation of risk manifests, and the profile of trend following is one example that we have written much on historically. The convex payoff of many long/short trend following strategies is evident from the historical payoff diagram.

Source: Newfound Research.Payoff Diversification(February 10^{th}, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index. The momentum portfolio is rebalanced monthly and selects the asset with the highest prior 12-month returns whereas the buy-and-hold variation is allowed to drift over the 1-year period.The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.This characteristic “V” shape in the diagram is reminiscent of an option straddle, where an investor buys a put and call option of the same maturity struck at the same price. This position allows the investor to profit if the price of the underlying security moves significantly in either direction, but they pay for this opportunity in the option premiums.

Source: theoptionsguide.comThe similarity of these payoff profiles is no coincidence. As we demonstrated in Trend – Convexity and Premium (February 11

^{th}, 2019), simple total return trend following signals coarsely approximate the delta of the straddle. For those less familiar with the parlance of options, delta is the sensitivity in the value of the options to changes in the underlying stock. For example, if delta is +1, then the value of the option position will match price changes in the underlying dollar-for-dollar. If delta is -1, then the position will lose $1 for every dollar gained in the underlying and vice versa (i.e. the position is effectively short).How does this connection arise? Consider a naïve S&P 500 trend strategy that rebalances monthly and uses 12-month total returns as a trend signal, buying when prior returns are positive and shorting when prior returns are negative. The key components of this strategy are today’s S&P 500 level and the level 12 months ago.

Now consider a strategy that buys a 1-month straddle with a strike equal to the level of the S&P 500 12 months ago. When the current level is above the strike, the strategy’s delta will be positive and when the level is below the strike, the delta will be negative. What we can see is that the sensitivity of our options trade to changes in the S&P 500 will match the sign of the trend strategy!

There are two key differences, however. First, our trend strategy was designed to always be 100% long or 100% short, whereas the straddle’s sensitivity can vary between -100% and 100%. Second, the trend strategy cannot change its exposure intramonth whereas the straddle will. In fact, if price starts above the strike price (a positive trend) but ultimately ends below – so far as it is sufficiently far that we can make up for the premium paid for our options – the straddle can still profit!

In this commentary, we will compare and contrast the trend and option-based approaches for a variety of lookback horizons.

## Methodology and Data

For this analysis, we will use the S&P 500 index for equity returns, the iShares Short-term U.S. Treasury Bond ETF (ticker: SHV) as the risk-free rate, and monthly options data on the S&P 500 (SPX options).

The long/short trend equity strategy looks at total returns of equities over a given number of months. If this return is positive, the strategy invests in equities for the following month. If the return is negative, the strategy shorts equities for the following month and earns the short-term Treasury rate on the cash. The strategy is rebalanced monthly on the third Friday of each month to coincide with the options expiration dates.

For the (semi-equivalent) straddle replication, at the end of each month we purchase a call option and a put option struck at the level of the S&P 500 at the beginning of the lookback window of the trend following strategy. We can also back out the strike price using the current trend signal value and S&P 500. For example, if the trend signal is 25% and the S&P 500 is trading at $3000, we would set the strike of the options at $2400.

The options account is assumed to be fully cash collateralized. Any premium is paid on the options roll date, interest is earned on the remaining account balance, and the option payout is realized on the next roll date.

To value the options, we employ Black-Scholes pricing on an implied volatility surface derived from available out-of-the money options. Specifically, on a given day we fit a parabola to the implied variances versus log-moneyness (i.e. log(strike/price)) of the options for each time to maturity.

In prior research, we created straddle-derived trend-following models by purchasing S&P 500 exposure in proportion to the delta of the strategy. To calculate delta, we had previously priced the options using 21-day realized volatility as a proxy for implied volatility. This generally leads to over-pricing the options during crisis times and underpricing during more tame market environments, especially for deeper out of the money puts. In this commentary we are actually purchasing the straddles and holding them for one month.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.## Straddle vs. Trend Following

Below we plot the ratio of the equity curves for the straddle strategies versus their corresponding trend following strategies. When the line is increasing, the straddle strategy is out-performing, and when the line is decreasing the trend strategy is out-performing.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.We can see, generally, that trend following out-performed the explicit purchase of options for almost all lookback periods for the majority of the 15-year test period.

It is only with the most recent expiration – March 20, 2020 – that many of the straddle strategies came to out-perform their respective trend strategies. With the straddle strategy, we pay an explicit premium to help insure our position against sudden and large intra-month price reversals. This did not occur very frequently during the 15 year history, but was very valuable protection in March when the trend strategies were largely still long coming off markets hitting all-time-highs in late February.

Shorter-term lookbacks fared particularly well during that month, as the trend following strategy was in a long position on the February 2020 options expiry date, and the straddles set by the short-term lookback window were relatively cheap from a historical perspective.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Note the curious case of the 14-month lookback. Entering March, the S&P 500 was +45% over a 14-month lookback (almost perfectly anchored to December 2018 lows). Therefore, the straddle was struck so deep in the money that it did not create any protection against the market’s sudden and large drawdown.

Prior to March 2020, only the 8- and 15-month lookback window strategies had outperformed their corresponding trend following strategies. In both cases, it was just barely and just recently.

Another interesting point to note is that longer-term straddle strategies (lookbacks greater than 9 months) shared similar movements during many periods while shorter-term lookbacks (3-6 months) showed more dispersion over time.

Overall, many of the straddles exhibit more “crisis alpha” than their trend following counterparts. This is an explicit risk we pay to hedge with the straddle approach and a fact we will discuss in more detail later on.

## How Equity Movements Affect Straddles

Before we move into a discussion of how we can frame the straddle strategies, it will be helpful to revisit how straddles are affected by changing equity prices and how this effect changes with different lookback windows for the strategies.

Consider the delta of a straddle versus how far away price is from the strike (normalized by volatility).

Naively, we might consider that the longer our trend lookback window – and therefore the further back in time we set our strike price – the further away from the strike that price has had the opportunity to move. Consider two extremes: a strike set equal to the price of the S&P 500 10 years ago versus one set a day ago. We would expect that today’s price is much closer to that from a day ago than 10 years ago.

Therefore, for a longer lookback horizon we might expect that there is a greater chance that the straddle is currently deeper in the money, leading to a delta closer to +/- 1. In the case of straddles struck at index levels more recently realized, it is more likely that price is close to at the money, leading to deltas closer to 0.

This also means that while the trend following strategy is taking a binary bet, the straddle is able to modulate exposure to equity moves when the trend is less pronounced. For example, if a 12-month trend signal is +1%, the trend model will retain a +1 exposure while the delta of the straddle may be closer to 0.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Additionally, when the delta of a straddle is closer to zero, its gamma is higher. Gamma reflects how quickly the straddle’s sensitivity to changes in the underlying asset – i.e. the delta – will change. The trend strategy has no intra-month gamma, as once the position is set it remains static until the next rebalance.

As we generally expect the straddles struck longer ago to be deeper in the money than those struck more recently, we would also expect them to have lower gamma.

This also serves to nicely connect trend speed with the length of the lookback window. Shorter lookback windows are associated with trend models that change signals more rapidly while longer lookback windows are slower. Given that a total return trend signal can be thought of as the average of daily log returns, we would expect a longer lookback to react more slowly to recent changes than a shorter lookback because the longer lookback is averaging over more data.

But if we think of it through the lens of options – that the shorter lookback is coarsely replicating the delta of a straddle struck more recently – then the ideas of speed and gamma become linked.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.## The Straddle Strategy as an Insurance Policy

One of the key differences between the trend strategy and the straddle is that the straddle has features that act as insurance against price reversals. As an example, consider a case where the trend strategy has a positive signal. To first replicate the payoff, the straddle strategy buys an in-the-money call option. This is the first form of insurance, as the total amount this position can lose is the premium paid for the option, while the trend strategy can lose significantly more.

The straddle strategy goes one step further, though, and would also buy a put option. So not only does it have a fixed loss on the call if price reverses course, but it can also

profitif it reverses sufficiently.One way to model the straddle strategies, then, is as insurance policies with varying deductibles. There is an up-front premium that is paid, and the strategy does not pay out until the deductible – the distance that the option is struck in the money – is met.

When the deductible is high – that is, when the trend is very strong in either direction – the premium for the insurance policy tends to be low. On the other hand, a strategy that purchases at the money straddles would be equivalent to buying insurance with no deductible.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.On average, the 3-month straddle strategy pays annual premiums of about 14% for the benefit of only having to wait for a price reversal of 6% before protection kicks in. Toward the other end of the spectrum, the 12-month strategy has an annual average premium of under 6% with a 16% deductible.

We can also visualize how often each straddle strategy pays higher premiums by looking at the deltas of the straddles over time. When these values deviate significantly from +1 or -1, then the straddle is lowering its insurance deductible in favor of paying more in premium. When the delta is nearly +1 or -1, then the straddle is buying higher deductible insurance that will take a larger whipsaw to payout.

The charts below show the delta over time in the straddle strategies vs. the trend allocation for 3-, 6-, and 12-month lookback windows.

There is significant overlap, especially as trends get longer. The differences in the deltas in the 3-month straddle model highlight its tradeoff between lower deductibles and higher insurance premiums. However, this leads it to be more adaptive at capitalizing on equity moves in the opposite direction that lead to losses in the binary trend-following model.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.The chart below shows the annualized performance of the straddle strategies when they underperform trend following (premium) and the annualized performance of the straddle strategies when they outperform trend following (payout). As the lookback window increases, both of these figures generally decline in absolute value.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Even though we saw previously that the 3-month straddle strategy had the highest annual premium, its overall payout when it outperforms trend following is substantial. The longer lookbacks do not provide as much of a buffer due to their higher deductible levels, despite their lower premiums.

When the naïve trend strategy is right, it captures the full price change with no up-front premium. When it is wrong, however, it bears the full brunt of losses.

With the straddle strategy, the cost is paid up front for the benefit to not only protect against price reversals, but even potentially profit from them.

As a brief aside, a simpler options strategy with similar characteristics would be to buy only either a call option or put option depending on the trend signal. This strategy would not profit from a reversion of the trend, but it would cap losses. Comparing it to the straddle strategies highlights the cost and benefit of the added protection.

Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.Buying only puts or calls generally helped both of the strategies shown in the chart. This came in reduced premiums over a time period when trimming premiums whenever possible paid off, especially for the 12-month lookback strategy. However, there are some notable instances where the extra protection of the straddle was very helpful, e.g. August 2011 and late 2014 for the 3-month lookback strategy and March 2020 for both.

Despite the similarities between the options and trend strategies, this difference in when the payment is made – either up-front in the straddle strategy or after-the fact in whipsaw in the trend following strategy – ends up being the key differentiator.

The relative performance of the strategies shows that investors mostly benefitted over the past 15 years by bearing this risk of whipsaw and large, sudden price-reversals. However, as the final moths of data indicates, option strategies can provide benefits that

option-likestrategies cannot.Ultimately, the choice between risks is up to investor preferences, and a diversified approach that pairs strategies different convex strategies such as trend following and options is likely most appropriate.

## Conclusion

The convex payoff profile of trend following strategies naturally lends itself to comparative analysis with option strategies, which also have a convex payoff profile. In fact, we would argue – as we have many times in the past – that trend following strategies coarsely replicate the delta profile of option straddles.

In this commentary, we sought to make that connection more explicit by building option straddle strategies that correspond to a naïve trend following strategies of varying lookback lengths.

While the trend following approach has no explicit up-front cost, it risks bearing the full brunt of sudden and large price reversals. With the straddle-based approach, an investor explicitly pays an up-front premium to insure against these risks.

When evaluated through the lens of an insurance policy, the straddle strategy dynamically adjusts its associated premium and deductible over time. When trends are strong, for example, premiums paid tend to be lower, but the cost is a higher deductible. Conversely, when trends are flat, the premium is much higher, but the deductible is much lower.

We found that over the 2005-2020 test period, the cost of the option premiums exceeded the cost of whipsaw in the trend strategies in almost all cases. That is, until March 2020, when a significant and sudden market reversal allowed the straddle strategies to make up for 15 years of relative losses in a single month.

As we like to say: risk cannot be destroyed, only transformed. In this case, the trend strategy was willing to bear the risk of large intra-month price reversals to avoid paying any up-front premium. This was a benefit to the trend investor for 15 years. And then it wasn’t.

By constructing straddle strategies, we believe that we can better measure the trade-offs of trend following versus the explicit cost of insurance. While trend following may approximate the profile of a straddle, it sacrifices some of the intra-month insurance qualities to avoid an up-front premium. Whether this risk trade-off is ultimately worth it depends upon the risks an investor is willing to bear.