The Research Library of Newfound Research

Category: Risk Management Page 3 of 11

Can Managed Futures Offset Equity Losses?

This post is available as a PDF download here.

Summary

  • Managed futures strategies have historically provided meaningful positive returns during left-tail equity events. Yet as a trading strategy, this outcome is by no means guaranteed.
  • While trend following is “mechanically convex,” the diverse nature of managed futures programs may actually prevent the strategy from offsetting equity market losses.
  • We generate a large number of random managed futures strategies by varying the asset classes included. We find that more diverse strategies have, historically, provided a larger offset to negative equity events.
  • This curious outcome appears to be caused by two effects: (1) diversification allows for increased total notional exposure; and (2) past crises saw coincidental trends across multiple markets simultaneously.
  • Therefore, for investors trying to offset equity market losses, an allocation to managed futures requires believing that future crises will be marked by a large number of simultaneous trends across multiple assets.
  • Less diversified strategies – such as just trading S&P 500 futures contracts – appear to work if the volatility target is removed.

Shortly after the 2008 crisis, the appetite for risk management strategies exploded.  At the forefront of this trend was managed futures, which had already proven itself in the dot-com fallout.  With the Societe Generale Trend Index1 returning 20.9% in 2008, the evidence for CTAs to provide “crisis alpha”2 seemed un-debatable.  AUM in these strategies sky-rocketed, growing from $200 billion in 2007 to approximately $325 billion by 2012.

Source: http://managedfuturesinvesting.com

Subsequent performance has, unfortunately, been lack-luster.  Since 12/31/2011, the SG Trend Index has returned just 14.2% compared to the S&P 500’s 200.8% total return.  While this is an unfair, apples-to-oranges comparison, it does capture the dispersion the strategy has exhibited to the benchmark most investors measure performance against during a bull market.

Furthermore, the allocation to managed futures had to come from somewhere.  If investors reduced exposure to equities to introduce managed futures, the spread in performance captures the opportunity cost of that decision.  There is hope yet: if the S&P 500 fell 50% over the next year, managed futures would have to return just 32% for their full-period performance (2011-2020) to equalize.

Yet how certain are we that managed futures would necessarily generate a positive return in an S&P 500 left-tail environment?  Hurst, Ooi, and Pedersen (2017)3 find that managed futures have generated anything from flat to meaningfully positive results during the top 10 largest drawdowns of a 60/40 portfolio since the late 1800s.  This evidence makes a strong empirical case, but we should acknowledge the N=10 nature of the data.

Perhaps we can lean into the mechanically convex nature of trend following.  Trend following is a close cousin to the trading strategy that delta-hedges a strangle, generating the pay-off profile of a straddle (long an at-the-money put and call).  Even without an anomalous premium generated by autocorrelation in the underlying security, the trading strategy itself should – barring trading frictions – generate a convex payoff.

Yet while mechanical convexity may be true on a contract-by-contract basis, it is entirely possible that the convexity we want to see emerge is diluted by trades across other contracts.  Consider the scenario where the S&P 500 enters a prolonged and significant drawdown and our managed futures strategy goes short S&P 500 futures contract.  While this trade may generate the hedge we were looking for, it’s possible that it is diluted by trades on other contracts such as wheat, the Japanese Yen, or the German Bund.

When we consider that many investors have portfolios dominated by equity risk (recall that equities have historically contributed 90% of the realized volatility for a 60/40 portfolio), it is possible that too much breadth within a managed futures portfolio could actually prevent it from providing negative beta during left-tail equity events.

 

Replicating Managed Futures

We begin our study by first replicating a generic trend-following CTA index.  We adopt an ensemble approach, which is effectively equivalent to holding a basket of managers who each implement a trend-following strategy with a different model and parameterization.

Specifically, we assume each manager implements using the same 47 contracts that represent a diversified basket of equities, rates, commodities, and currencies.4

We implement with three different models (total return, price-minus-moving-average, and dual-moving-average-cross) and five potential lookback specifications (21, 42, 84, 168, and 336 days) for a total of 15 different implementations.

Each implementation begins by calculating an equal-risk contribution (“risk parity”) portfolio.  Weights for each contract are then multiplied by their trend signal (which is simply either +1 or -1).

The weights for all 15 implementations are then averaged together to generate our index weights.  Notional exposure of the aggregate weights is then scaled to target a 10% annualized volatility level.  We assume that the index is fully collateralized using the S&P U.S. Treasury Bill Index.

Below we plot our index versus the SG Trend Index.  The correlation of monthly returns between these two indices is 75% suggesting that our simple implementation does a reasonable job approximating the broad trend-following style of CTAs.  We can also see that it captures the salient features of the SG Trend Index, including strong performance from 2001-2003, Q4 2008 and Q1 2009, and the 2014-2015 period.  We can also see it closely tracks the shape the SG Trend Index equity curve from 2015 onward in all its meandering glory.

Source: Stevens Analytics.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

Convexity versus Diversification

To explore the impact of diversification in managed futures versus convexity exhibited against the S&P 500, we will create a number of managed futures strategies and vary the number of contracts included.  As we are attempting to create a convex payoff against the S&P 500, the S&P 500 futures contract will always be selected.

For example, a 2-contract strategy will always include S&P 500 futures, but the second contract could be 10-year U.S. Treasuries, the Nikkei, the Australian Dollar, Oil, or any of the other 42 futures contracts.  Once selected, however, that pair defines the strategy.

For 2-, 4-, 8-, 16-, and 32- contract systems, we generate the performance of 25 randomly selected strategies.  We then generate scatter plots with non-overlapping 6-month returns for the S&P 500 on the x-axis and non-overlapping 6-month returns for the managed futures strategies on the y-axis.5 We then fit a 2nd-degree polynomial line to visualize the realized convexity.

(Note that for the single contract case – i.e. just the S&P 500 futures contract – we plot overlapping 6-month returns.)

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

There are two particularly interesting artifacts to note.

First, as the number of contracts goes up, the best-fit model turns from a “smile” to a “smirk,” suggesting that diversification dilutes positive convexity relationships with the S&P 500.  This outcome should have been expected, as we generally know how managed futures has done over the 20-year period we’re examining.  Namely, managed futures did quite well offsetting losses in 2000-2003 and 2008-2009, but has failed to participate in the 2010s.

Perhaps more interestingly, however, is the increase in left-tail performance of managed futures, climbing from 20% when just trading the S&P 500 futures contract to 150% in the 32-contract case.  The subtle reason here is diversification’s impact on total notional exposure.

Consider this trivial example: Asset A and Asset B have constant 10% volatility and are uncorrelated with one another.  As they are uncorrelated, any combination of these assets will have a volatility that is less than 10%.  Therefore, if we want to achieve 10%, we need to apply leverage.  In fact, a 50-50 mix of these assets requires us to apply 1.41x leverage to achieve our volatility target, resulting in 70.7% exposure to each asset.

As a more concrete example, when trading just the S&P 500 futures contract, achieving 10% volatility position in 2008 requires diluting gross notional exposure to just 16%.  For the full, 47-contract model, gross notional exposure during 2008 dipped to 90% at its lowest point.

Now consider that trend following tends to transform the underlying distributions of assets to generate positive skewness.  Increasing leverage can help push those positive trades even further out in the tails.

But here’s the trade-off: the actual exposure to S&P 500 futures contracts, specifically, still remains much, much higher in the case where we’re trading it alone.  In practice, the reason the diversified approach was able to generate increased returns during left-tail equity events – such as 2008 – is due to the fact correlations crashed to extremes (both positive and negative) between global equity indices, rates, commodities, and currencies.  This allowed the total notional exposure of directionally similar trades (e.g. short equities, long bonds, and short commodities in 2008) to far exceed the total notional exposure achieved if we were just trading the S&P 500 futures contract alone.

Source: Stevens Analytics.  Calculations by Newfound Research. 

Our confidence in achieving negative convexity versus equity left-tail events, therefore, is inherently tied to our belief that we will see simultaneously trends across a large number of assets during such environments.

Another interpretation of this data is that because negative trends in the S&P 500 have historically coincided with higher volatility, a strategy that seeks to trade just the S&P 500 futures with constant volatility will lose convexity in those tail events.  An alternative choice is to vary the volatility of the system to target the volatility of the S&P 500, whose convexity profile we plot below.

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

This analysis highlights a variety of trade-offs to consider:

  1. What, specifically, are we trying to create convexity against?
  2. Can diversification allow us to increase our notional exposure?
  3. Will diversification be dilutive to our potential convexity?

Perhaps, then, we should consider approaching the problem from another angle: given exposure to managed futures, what would be a better core portfolio to hold?  Given that most managed futures portfolios start from a risk parity core, the simplest answer is likely risk parity.

As an example, we construct a 10% target volatility risk parity index using equity, rate, and commodity contracts.  Below we plot the convexity profile of our managed futures strategy against this risk parity index and see the traditional “smile” emerge.  We also plot the equity curves for the risk parity index, the managed futures index, and a 50/50 blend.  Both the risk parity and managed futures indices have a realized volatility of level of 10.8%; the blended combination drops this volatility to just 7.6%, achieving a maximum drawdown of just -10.1%.

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

Conclusion

Managed futures have historically generated significant gains during left-tail equity events.  These returns, however, are by no means guaranteed.  While trend following is a mechanically convex strategy, the diversified nature of most managed futures programs can potentially dilute equity-crisis-specific returns.

In this research note, we sought to explore this concept by generating a large number of managed futures strategies that varied in the number of contracts traded.  We found that increasing the number of contracts had two primary effects: (1) it reduced realized convexity from a “smile” to a “smirk” (i.e. exhibited less up-side participation with equity markets); and (2) meaningfully increased returns during negative equity markets.

The latter is particularly curious but ultimately the byproduct of two facts.  First, increasing diversification allows for increased notional exposure in the portfolio to achieve the same target volatility level.  Second, during past crises we witnessed a large number of assets trending simultaneously.  Therefore, while increasing the number of contracts reduced notional exposure to S&P 500 futures specifically, the total notional exposure to trades generating positive gains during past crisis events was materially higher.

While the first fact is evergreen, the second may not always be the case.  Therefore, employing managed futures specifically as a strategy to provide offsetting returns during an equity market crisis requires the belief that a sufficient number of other exposures (i.e. equity indices, rates, commodities, and currencies) will be exhibiting meaningful trends at the same time.

Given its diversified nature, it should come as no surprise that managed futures appear to be a natural complement to a risk parity portfolio.

Investors acutely sensitive to significant equity losses – e.g. those in more traditional strategic allocation portfolios – might therefore consider strategies designed more specifically with such environments in mind.  At Newfound, we believe that trend equity strategies are one such solution, as they overlay trend-following techniques directly on equity exposure, seeking to generate the convexity mechanically and not through correlated assets.  When overlaid with U.S. Treasury futures – which have historically provided a “flight-to-safety” premium during equity crises – we believe it is a particularly strong solution.

 


Re-specifying the Fama French 3-Factor Model

This post is available as a PDF download here.

Summary­

  • The Fama French three-factor model provides a powerful tool for assessing exposures to equity risk premia in investment strategies.
  • In this note, we explore alternative specifications of the value (HML) and size (SMB) factors using price-to-earnings, price-to-cash flow, and dividend yield.
  • Running factor regressions using these alternate specifications on a suite of value ETFs and Newfound’s Systematic Value strategy, lead to a wide array of results, both numerically and directionally.
  • While many investors consider the uncertainty of the parameter estimates from the regression using the three-factor model, most do not consider the uncertainty that comes from the assumption of how you construct the equity factors in the first place.
  • Understanding the additional uncertainty is crucial for manager and investors who must consider what risks they are trying to measure and control by using tools like factor regression and make sure their assumptions align with their goals.

In their 1992 paper, The Cross-Section of Expected Stock Returns, Eugene Fama and Kenneth French outlined their three-factor model to explain stock returns.

While the Capital Asset Pricing Model (CAPM) only describes asset returns in relation to their exposure to the market’s excess return through the stock’s beta and identifies any return beyond that as alpha, Fama and French’s three-factor model reattributed some of that supposed alpha to exposures to a value factor (High-minus-low or HML) based on returns stratified by price-to-book ratios and a size factor (small-minus-big or SMB) based on returns stratified by market capitalization.

This gave investors a tool to judge investment strategies based on the loadings to these risk factors. A manager with a seemingly high alpha may have simply been investing in value and small-cap stocks historically.

The notion of compensated risk premia has also opened the floodgate of many additional factors from other researchers (such as momentum, quality, low beta, etc.) and even two more factors from Fama and French (investment and profitability).

A richer factor universe opens up a wide realm of possibilities for analysis and attribution. However, setting further developments aside and going back to the original three-factor model, we would be remiss if we didn’t dive a bit further into its specification.

At the highest level, we agree with treating “value” and “size” as risk factors, but there is more than one way to skin a factor.

What is “value”?

Fama and French define it using the price-to-book ratio of a stock. This seems legitimate for a broad swath of stocks, especially those that are very capital intensive – such as energy, manufacturing, and financial firms – but what about industries that have structurally lower book values and may have other potential price drivers? For example, a technology company might have significant intangible intellectual property and some utility companies might employ leverage, which decreases their book value substantially.

To determine value in these sectors, we might utilize ratios that account for sales, dividends, or earnings. But then if we analyzed these strategies using the Fama French three-factor model as it is specified, we might misjudge the loading on the value factor.

“Size” seems more straightforward. Companies with low market capitalizations are small. However, when we consider how the size factor is defined based on the value factor, there might even be some differences in SMB using different value metrics.

In this commentary, we will explore what happens when we alter the definition of value for the value factor (and hence the size factor) and see how this affects factor regressions of a sample of value ETFs along with our Systematic Value strategy.

HML Factor Definitions

In the standard version of the Fama French 3-factor model, HML is constructed as a self-financing long/short portfolio using a 2×3 sort on size and value. The investment universe is split in half based on market capitalization and in three parts (30%/40%/30%) based on valuation, in this base case, price-to-book ratio.

Using additional data from the Kenneth French Data Library and the same methodology, we will construct HML factors using sorts based on size and:

  • Price-to-earnings ratios
  • Price-to-cash flow ratios
  • Dividend yields

The common inception date for all the factors is June 1951.

The chart below shows the growth of each of the four value factor portfolios.

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Over the entire time period – and for many shorter time horizons – the standard HML factor using price-to-book does not even have the most attractive returns. Price-to-earnings and price-to-cash flow often beat it out.

On the other hand, the HML factor formed using dividend yields doesn’t look so hot.

One of the reasons behind this is that the small, low dividend yield companies performed much better than the small companies that were ranked poorly by the other value factors. We can see this effect borne out in the SMB chart for each factor, as the SMB factor for dividend yield performed the best.

(Recall that we mentioned previously how the Fama French way of defining the size factor is dependent on which value metric we use.)

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.

Looking at the statistical significance of each factor through its t-statistic, we can see that Price-to-Earnings and Price-to-Cash Flow yielded higher significance for the HML factor than Price-to-Book. And those two along with Dividend Yield all eclipsed the Price-to-Book construction of the SMB factor.

T-Statistics for HML and SMB Using Various Value Metrics

 Price-to-BookDividend YieldPrice-to-EarningsPrice-to-Cash Flow
HML2.90.03.73.4
SMB1.02.41.61.9

Assuming that we do consider all metrics to be appropriate ways to assess the value of companies, even if possibly under different circumstances, how do different variants of the Fama French three-factor model change for each scenario with regression analysis?

The Impact on Factor Regressions

Using a sample of U.S. value ETFs and our Systematic Value strategy, we plot the loadings for the different versions of HML. The regressions are carried out using the trailing three years of monthly data ending on October 2019.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

For each different specification of HML, the differences in the loading between investments is generally directionally consistent. For instance, DVP has higher loadings than FTA for all forms of HML.

However, sometimes this is not the case.

VLUE looks more attractive than VTV based on price-to-cash flow but not dividend yield. FTA is roughly equivalent to QVAL in terms of loading when price-to-book is used for HML, but it varies wildly when other metrics are used.

The tightest range for the four models for any of the investments is 0.09 (PWV) and the widest is 0.52 (QVAL). When we factor in that these estimates each have their own uncertainty, distinguishing which investment has the better value characteristic is tough. Decisions are commonly made on much smaller differences.

We see similar dispersion in the SMB loadings for the various constructions.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

Many of these values are not statistically significant from zero, so someone who has a thorough understanding of uncertainty in regression would likely not draw a strict comparison between most of these investments.

However, one implication of this is that if a metric is chosen that does ascribe significant size exposure to one of these investments, an investor may make a decision based on not wanting to bear that risk in what they desire to be a large-cap investment.

Can We Blend Our Way Out?

One way we often mitigate model specification risk is by blending a number of models together into one.

By averaging all of our HML and SMB factors, respectively, we arrive at blended factors for the three-factor model.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

All of the investments now have HML loadings in the top of their range of the individual model loadings, and many (FTA, PWV, RPV, SPVU, VTV, and the Systematic Value strategy) have loadings to the blended HML factor that exceed the loadings for all of the individual models.

The opposite is the case for the blended SMB factor: the loadings are in the low-end of the range of the individual model loadings.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

So which is the correct method?

That’s a good question.

For some investments, it is situation-specific. If a strategy only uses price-to-earnings as its value metric, then putting it up against a three-factor model using the P/E ratio to construct the factors is appropriate for judging the efficacy of harvesting that factor.

However, if we are concerned more generally about the abstract concept of “value”, then the blended model may be the best way to go.

Conclusion

In this study, we have explored the impact of model specification for the value and size factor in the Fama French three-factor model.

We empirically tested this impact by designing a variety of HML and SMB factors based on three additional value metrics (price-to-earnings, price-to-cash flow, and dividend yield). These factors were constructed using the same rules as for the standard method using price-to-book ratios.

Each factor, with the possible exceptions of the dividend yield-based HML, has performance that could make it a legitimate specification for the three-factor model over the time that common data is available.

Running factor regressions using these alternate specifications on a suite of value ETFs and Newfound’s Systematic Value strategy, led to a wide array of results, both numerically and directionally.

While many investors consider the uncertainty of the parameter estimates from the regression using the three-factor model, most do not consider the uncertainty that comes from the assumption of how you construct the equity factors in the first place.

Understanding the additional uncertainty is crucial for decision-making. Managers and investors alike must consider what risks they are trying to measure and control by using tools like factor regression and make sure their assumptions align with their goals.

“Value” is in the eye of the beholder, and blind applications of two different value factors may lead to seeing double conclusions.

Diversification: More Than “What”

Not seeing the video?  Click here.

 

Harvesting the Bond Risk Premium

This post is available as a PDF download here.

Summary­

  • The bond risk premium is the return that investors earn by investing in longer duration bonds.
  • While the most common way that investors can access this return stream is through investing in bond portfolios, bonds often significantly de-risk portfolios and scale back returns.
  • Investors who desire more equity-like risk can tap into the bond risk premium by overlaying bond exposure on top of equities.
  • Through the use of a leveraged ETP strategy, we construct a long-only bond risk premium factor and investigate its characteristics in terms of rebalance frequency and timing luck.
  • By balancing the costs of trading with the risk of equity overexposure, investors can incorporate the bond risk premium as a complementary factor exposure to equities without sacrificing return potential from scaling back the overall risk level unnecessarily.

The discussion surrounding factor investing generally pertains to either equity portfolios or bond portfolios in isolation. We can calculate value, momentum, carry, and quality factors for each asset class and invest in the securities that exhibit the best characteristics of each factor or a combination of factors.

There are also ways to use these factors to shift allocations between stocks and bonds (e.g. trend and standardizing based on historical levels). However, we do not typically discuss bonds as their own standalone factor.

The bond risk premium – or term premium – can be thought of as the premium investors earn from holding longer duration bonds as opposed to cash. In a sense, it is a measure of carry. Its theoretical basis is generally seen to be related to macroeconomic factors such as inflation and growth expectations.1

While timing the term premium using factors within bond duration buckets is definitely a possibility, this commentary will focus on the term premium in the context of an equity investor who wants long-term exposure to the factor.

The Term Premium as a Factor

For the term premium, we can take the usual approach and construct a self-financing long/short portfolio of 100% intermediate (7-10 year) U.S. Treasuries that borrows the entire portfolio value at the risk-free rate.

This factor, shown in bold in the chart below, has exhibited a much tamer return profile than common equity factors.

Source: CSI Analytics, AQR, and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

Source: CSI Analytics, AQR, and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

But over the entire time period, its returns have been higher than those of both the Size and Value factors. Its maximum drawdown has been less than 40% of that of the next best factor (Quality), and it is worth acknowledging that its volatility – which is generally correlated to drawdown for highly liquid assets with non-linear payoffs – has also been substantially lower.

The term premium also has exhibited very low correlation with the other equity factors.

Source: CSI Analytics, AQR, and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

A Little Free Lunch

Whether we are treating bonds as factor or not, they are generally the primary way investors seek to diversify equity portfolios.

The problem is that they are also a great way to reduce returns during most market environments through their inherently lower risk.

Anytime that an asset with lower volatility is added to a portfolio, the risk will be reduced. Unless the asset class also has a particularly high Sharpe ratio, maintaining the same level of return is virtually impossible even if risk-adjusted returns are improved.

In a 2016 paper2, Salient broke down this reduction in risk into two components: de-risking and the “free lunch” affect.

The reduction in risk form the free lunch effect is desirable, but the risk reduction from de-risking may or may not be desirable, depending on the investor’s target risk profile.

The following chart shows the volatility breakdown of a range of portfolios of the S&P 500 (IVV) and 7-10 Year U.S. Treasuries (IEF).

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

Moving from an all equity portfolio to a 50/50 equity reduces the volatility from 14.2% to 7.4%. But only 150 bps of this reduction is from the free lunch effect that stems from the lower correlation between the two assets (-0.18). The remaining 530 bps of volatility reduction is simply due to lower risk.

In this case, annualized returns were dampened from 9.6% to 7.8%. While the Sharpe ratio climbed from 0.49 to 0.70, an investor seeking higher risk would not benefit without the use of leverage.

Despite the strong performance of the term premium factor, risk-seeking investors (e.g. those early in their careers) are generally reluctant to tap into this factor too much because of the de-risking effect.

How do investors who want to bear risk commensurate with equities tap into the bond risk premium without de-risking their portfolio?

One solution is using leveraged ETPs.

Long-Only Term Premium

By taking a 50/50 portfolio of the 2x Levered S&P 500 ETF (SSO) and the 2x Levered 7-10 Year U.S. Treasury ETF (UST), we can construct a portfolio that has 100% equity exposure and 100% of the term premium factor.3

But managing this portfolio takes some care.

Left alone to drift, the allocations can get very far away from their target 50/50, spanning the range from 85/15 to 25/75. Periodic rebalancing is a must.

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

Of course, now the question is, “How frequently should we rebalance the portfolio?”

This boils down to a balancing act between performance and costs (e.g. ticket charges, tax impacts, operational burden, etc.).

On one hand, we would like to remain as close to the 50/50 allocation as possible to maintain the desired exposure to each asset class. However, this could require a prohibitive amount of trading.

From a performance standpoint, we see improved results with longer holding periods (take note of the y-axes in the following charts; they were scaled to highlight the differences).

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

The returns do not show a definitive pattern based on rebalance frequency, but the volatility decreases with increasing time between rebalances. This seems like it would point to waiting longer between rebalances, which would be corroborated by a consideration of trading costs.

The issues with waiting longer between the rebalance are twofold:

  1. Waiting longer is essentially a momentum trade. The better performing asset class garners a larger allocation as time progresses. This can be a good thing – especially in hindsight with how well equities have done – but it allows the portfolio to become overexposed to factors that we are not necessarily intending to exploit.
  2. Longer rebalances are more exposed to timing luck. For example, a yearly rebalance may have done well from a performance perspective, but the short-term performance could vary by as much as 50,000 bps between the best performing rebalance month and the worst! The chart below shows the performance of each iteration relative to the median performance of the 12 different monthly rebalance strategies.

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

As the chart also shows, tranching can help mitigate timing luck. Tranching also gives the returns of the strategies over the range of rebalance frequencies a more discernible pattern, with longer rebalance period strategies exhibiting slightly higher returns due to their higher average equity allocations.

Under the assumption that we can tranche any strategy that we choose, we can now compare only the tranched strategies at different rebalance frequencies to address our concern with taking bets on momentum.

Pausing for a minute, we should be clear that we do not actually know what the true factor construction should be; it is a moving target. We are more concerned with robustness than simply trying to achieve outperformance. So we will compare the strategies to the median performance of the previously monthly offset annual rebalance strategies.

The following charts shows the aggregate risk of short-term performance deviations from this benchmark.

The first one shows the aggregate deviations, both positive and negative, and the second focuses on only the downside deviation (i.e. performance that is worse than the median).4

Both charts support a choice of rebalance frequency somewhere in the range of 3-6 months.

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

With the rebalance frequency set based on the construction of the factor, the last part is a consideration of costs.

Unfortunately, this is more situation-specific (e.g. what commissions does your platform charge for trades?).

From an asset manager point-of-view, where we can trade with costs proportional to the size of the trade, execute efficiently, and automate much of the operational burden, tranching is our preferred approach.

We also prefer this approach over simply rebalancing back to the static 50/50 allocation more frequently.

In our previous commentary on constructing value portfolios to mitigate timing luck, we described how tranching monthly is a different decision than rebalancing monthly and that tranching frequency and rebalance frequency are distinct decisions.

We see the same effect here where we plot the monthly tranched annually rebalanced strategy (blue line) and the strategy rebalanced back to 50/50 every month (orange line).

Source: CSI Analytics and Bloomberg. Calculations by Newfound Research. Data from 1/31/1992 to 6/28/2019. Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  

Tranching wins out.

However, since the target for the term premium factor is a 50/50 static allocation, running a simple allocation filter to keep the portfolio weights within a certain tolerance can be a way to implement a more dynamic rebalancing model while reducing costs.

For example, rebalancing when the allocations for SSO and UST we outside a 5% band (i.e. the portfolio was beyond a 55/45 or 45/55) achieved better performance metrics than the monthly rebalanced version with an average of only 3 rebalances per year.

Conclusion

The bond term premium does not have to be reserved for risk-averse investors. Investors desiring portfolios tilted heavily toward equities can also tap into this diversifying return stream as a factor within their portfolio.

Utilizing leveraged ETPs is one way to maintaining exposure to equities while capturing a significant portion of the bond risk premium. However, it requires more oversight than investing in other factors such as value, momentum, and quality, which are typically packaged in easy-to-access ETFs.

If a fixed frequency rebalance approach is used, tranching is an effective way to reduce timing risk, especially when markets are volatile. Aside from tranching, we find that, historically, holding periods between 3 and 6 months yield results close in line with the median rolling short-term performance of the individual strategies. Implementing a methodology like this can reduce the risk of poor luck in choosing the rebalance frequency or starting the strategy at an unfortunate time.

If frequent rebalances – like those seen with tranching – are infeasible, a dynamic schedule based on a drift in allocations is also a possibility.

Leveraged ETPs are often seen as risk trading instruments that are not fit for retail investors who are more focused on buy-and-hold systems. However, given the right risk management, these investment vehicles can be a way for investors to access the bond term premium, getting a larger free lunch, and avoiding undesired de-risking along the way.

Ensemble Multi-Asset Momentum

This post is available as a PDF download here.

Summary­

  • We explore a representative multi-asset momentum model that is similar to many bank-based indexes behind structured products and market-linked CDs.
  • With a monthly rebalance cycle, we find substantial timing luck risk.
  • Using the same basic framework, we build a simple ensemble approach, diversifying both process and rebalance timing risk.
  • We find that the virtual strategy-of-strategies is able to harvest diversification benefits, realizing a top-quartile Sharpe ratio with a bottom-quartile maximum drawdown.

Early in the 2010s, a suite of index-linked products came to market that raised billions of dollars.  These products – offered by just about every major bank – sought to simultaneously exploit the diversification benefits of modern portfolio theory and the potential for excess returns from the momentum anomaly.

While each index has its own bells and whistles, they generally follow the same approach:

  • A global, multi-asset universe covering equities, fixed income, and commodities.
  • Implemented using highly liquid ETFs.
  • Asset class and position-level allocation limits.
  • A monthly rebalance schedule.
  • A portfolio optimization that seeks to maximize weighted prior returns (e.g. prior 6 month returns) while limiting portfolio volatility to some maximum threshold (e.g. 5%).

And despite their differences, we can see in plotting their returns below that these indices generally share a common return pattern, indicating a common, driving style.

Source: Bloomberg.

Frequent readers will know that “monthly rebalance” is an immediate red flag for us here at Newfound: an indicator that timing luck is likely lurking nearby.

Replicating Multi-Asset Momentum

To test the impact of timing luck, we replicate a simple multi-asset momentum strategy based upon available index descriptions.

We rebalance the portfolio at the end of each month.  Our optimization process seeks to identify the portfolio with a realized volatility less than 5% that would have maximized returns over the prior six months, subject to a number of position and asset-level limits.  If the 5% volatility target is not achievable, the target is increased by 1% until a portfolio can be constructed that satisfies our constraints.

We use the following ETFs and asset class limits:

As a naïve test for timing luck, rather than assuming the index rebalances at the end of each month, we will simply assume the index rebalances every 21 trading days. In doing so, we can construct 21 different variations of the index, each representing the results from selecting a different rebalance date.

Source: CSI Analytics; Calculations by Newfound Research.  Results are backtested and hypothetical.  Results assume the reinvestment of all distributions.  Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes, with the exception of underlying ETF expense ratios.  Past performance is not an indicator of future results. 

As expected, the choice of rebalance date has a meaningful impact.  Annualized returns range from 4.7% to 5.5%, Sharpe ratios range from 0.6 to 0.9, and maximum drawdowns range from 9.9% to 20.8%.

On a year-by-year basis, the only thing that is consistent is the large spread between the worst and best-performing rebalance date.  On average, the yearly spread exceeds 400 basis points.

Min

Max

2008*

-9.91%

0.85%

2009

2.36%

4.59%

2010

6.46%

9.65%

2011

3.31%

10.15%

2012

6.76%

10.83%

2013

3.42%

6.13%

2014

5.98%

10.60%

2015

-5.93%

-2.51%

2016

4.18%

8.45%

2017

9.60%

11.62%

2018

-6.00%

-2.53%

2019 YTD

5.93%

10.01%

* Partial year starting 7/22/2018

We’ve said it in the past and we’ll say it again: timing luck can be the difference between hired and fired.  And while we’d rather be on the side of good luck, the lack of control means we’d rather just avoid this risk all together.

If it isn’t nailed down for a reason, diversify it

The choice of when to rebalance is certainly not the only free variable of our multi-asset momentum strategy.  Without an explicit view as to why a choice is made, our preference is always to diversify so as to avoid specification risk.

We will leave the constraints (e.g. volatility target and weight constraints) well enough alone in this example, but we should consider the process by which we’re measuring past returns as well as the horizon over which we’re measuring it.  There is plenty of historical efficacy to using prior 6-month total returns for momentum, but no lack of evidence supporting other lookback horizons or measurements.

Therefore, we will use three models of momentum: prior total return, the distance of price from its moving average, and the distance of a short-term moving average from a longer-term moving average.  We will vary the parameterization of these signals to cover horizons ranging from 3- to 15-months in length.

We will also vary which day of the month the portfolio rebalances on.

By varying the signal, the lookback horizon, and the rebalance date, we can generate hundreds of different portfolios, all supported by the same theoretical evidence but having slightly different realized results due to their particular specification.

Our robust portfolio emerges by calculating the weights for all these different variations and averaging them together, in many ways creating a virtual strategy-of-strategies.

Below we plot the result of this –ensemble approach– as compared to a –random sample of the underlying specifications–.  We can see that while there are specifications that do much better, there are also those that do much worse.  By employing an ensemble approach, we forgo the opportunity for good luck and avoid the risk of bad luck.   Along the way, though, we may pick up some diversification benefits: the Sharpe ratio of the ensemble approach fell in the top quartile of specifications and its maximum drawdown was in the bottom quartile (i.e. lower drawdown).

Source: CSI Analytics; Calculations by Newfound Research.  Results are backtested and hypothetical.  Results assume the reinvestment of all distributions.  Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes, with the exception of underlying ETF expense ratios.  Past performance is not an indicator of future results.

Conclusion

In this commentary, we again demonstrate the potential risk of needless specification and the potential power of diversification.

Using a popular multi-asset momentum model as our example, we again find a significant amount of timing luck lurking in a monthly rebalance specification.  By building a virtual strategy-of-strategies, we are able to manage this risk by partially rebalancing our portfolio on different days.

We go a step further, acknowledging that processrepresents another axis of risk. Specifically, we vary both how we measure momentum and the horizon over which it is measured.  Through the variation of rebalance days, model specifications, and lookback horizons, we generate over 500 different strategy specifications and combine them into a virtual strategy-of-strategies to generate our robust multi-asset momentum model.

As with prior commentaries, we find that the robust model is able to effectively reduce the risk of both specification and timing luck.  But perhaps most importantly, it was able to harvest the benefits of diversification, realizing a Sharpe ratio in the top quartile of specifications and a maximum drawdown in the lowest quartile.

Page 3 of 11

Powered by WordPress & Theme by Anders Norén