This post is available as a PDF download here.
Summary
- We have shown previously that it is possible to time factors using value and momentum but that the benefit is not large.
- By constructing a simple model for factor timing, we examine what accuracy would be required to do better than a momentum-based timing strategy.
- While the accuracy required is not high, finding the system that achieves that accuracy may be difficult.
- For investors focused on managing the risks of underperformance – both in magnitude and frequency – a diversified factor portfolio may be the best choice.
- Investors seeking outperformance will have to bear more concentration risk and may be open to more model risk as they forego the diversification among factors.
A few years ago, we began researching factor timing – moving among value, momentum, low volatility, quality, size etc. – with the hope of earning returns in excess not only of the equity market, but also of buy-and-hold factor strategies.
To time the factors, our natural first course of action was to exploit the behavioral biases that may create the factors themselves. We examined value and momentum across the factors and used these metrics to allocate to factors that we expected to outperform in the future.
The results were positive. However, taking into account transaction costs led to the conclusion that investors were likely better off simply holding a diversified factor portfolio.
We then looked at ways to time the factors using the business cycle.
The results in this case were even less convincing and were a bit too similar to a data-mined optimal solution to instill much faith going forward.
But this evidence does not necessarily remove the temptation to take a stab at timing the factors, especially since explicit transactions costs have been slashed for many investors accessing long-only factors through ETFs.Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
After all, there is a lot to gain by choosing the right factors. For example, in the first 9 months of 2019, the spread between the best (Quality) and worst (Value) performing factors was nearly 1,000 basis points (“bps”). One month prior, that spread had been double!
In this research note, we will move away from devising a systematic approach to timing the factors (as AQR asserts, this is deceptively difficult) and instead focus on what a given method would have to overcome to achieve consistent outperformance.
Benchmarking Factor Timing
With all equity factor strategies, the goal is usually to outperform the market-cap weighted equity benchmark.
Since all factor portfolios can be thought of as a market cap weighted benchmark plus a long/short component that captures the isolated factor performance, we can focus our study solely on the long/short portfolio.
Using the common definitions of the factors (from Kenneth French and AQR), we can look at periods over which these self-financing factor portfolios generate positive returns to see if overlaying them on a market-cap benchmark would have added value over different lengths of time.1
We will also include the performance of an equally weighted basket of the four factors (“Blend”).
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
The persistence of factor outperformance over one-month periods is transient. If the goal is to outperform the most often, then the blended portfolio satisfies this requirement, and any timing strategy would have to be accurate enough to overcome this already existing spread.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
The results for the blended portfolio are so much better than the stand-alone factors because the factors have correlations much lower than many other asset classes, allowing even naïve diversification to add tremendous value.
The blended portfolio also cuts downside risk in terms of returns. If the timing strategy is wrong, and chooses, for example, momentum in an underperforming month, then it could take longer for the strategy to climb back to even. But investors are used to short periods of underperformance and often (we hope) realize that some short-term pain is necessary for long-term gains.
Looking at the same analysis over rolling 1-year periods, we do see some longer periods of factor outperformance. Some examples are quality in the 1980s, value in the mid-2000s, momentum in the 1960s and 1990s, and size in the late-1970s.
However, there are also decent stretches where the factors underperform. For example, the recent decade for value, quality in the early 2010s, momentum sporadically in the 2000s, and size in the 1980s and 1990s. If the timing strategy gets stuck in these periods, then there can be a risk of abandoning it.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
Again, a blended portfolio would have addressed many of these underperforming periods, giving up some of the upside with the benefit of reducing the risk of choosing the wrong factor in periods of underperformance.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
And finally, if we extend our holding period to three years, which may be used for a slower moving signal based on either value or the business cycle, we see that the diversified portfolio still exhibits outperformance over the most rolling periods and has a strong ratio of upside to downside.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
The diversified portfolio stands up to scrutiny against the individual factors but could a generalized model that can time the factors with a certain degree of accuracy lead to better outcomes?
Generic Factor Timing
To construct a generic factor timing model, we will consider a strategy that decides to hold each factor or not with a certain degree of accuracy.
For example, if the accuracy is 50%, then the strategy would essentially flip a coin for each factor. Heads and that factor is included in the portfolio; tails and it is left out. If the accuracy is 55%, then the strategy will hold the factor with a 55% probability when the factor return is positive and not hold the factor with the same probability when the factor return is negative. Just to be clear, this strategy is constructed with look-ahead bias as a tool for evaluation.
All factors included in the portfolio are equally weighted, and if no factors are included, then the returns is zero for that period.
This toy model will allow us to construct distributions to see where the blended portfolio of all the factors falls in terms of frequency of outperformance (hit rate), average outperformance, and average underperformance. The following charts show the percentiles of the diversified portfolio for the different metrics and model accuracies using 1,000 simulations.2
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
In terms of hit rate, the diversified portfolio behaves in the top tier of the models over all time periods for accuracies up to about 57%. Even with a model that is 60% accurate, the diversified portfolio was still above the median.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
For average underperformance, the diversified portfolio also did very well in the context of these factor timing models. The low correlation between the factors leads to opportunities for the blended portfolio to limit the downside of individual factors.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
For average outperformance, the diversified portfolio did much worse than the timing model over all time horizons. We can attribute this also to the low correlation between the factors, as choosing only a subset of factors and equally weighting them often leads to more extreme returns.
Overall, the diversified portfolio manages the risks of underperformance, both in magnitude and in frequency, at the expense of sacrificing outperformance potential. We saw this in the first section when we compared the diversified portfolio to the individual factors.
But if we want to have increased return potential, we will have to introduce some model risk to time the factors.
Checking in on Momentum
Momentum is one model-based way to time the factors. Under our definition of accuracy in the toy model, a 12-1 momentum strategy on the factors has an accuracy of about 56%. While the diversified portfolio exhibited some metrics in line with strategies that were even more accurate than this, it never bore concentration risk: it always held all four factors.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
For the hit rate percentiles of the momentum strategy, we see a more subdued response. Momentum does not win as much as the diversified portfolio over the different time periods.
But not winning as much can be fine if you win bigger when you do win.
The charts below show that momentum does indeed have a higher outperformance percentile but with a worse underperformance percentile, especially for 1-month periods, likely due to mean reversionary whipsaw.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.
While momentum is definitely not the only way to time the factors, it is a good baseline to see what is required for higher average outperformance.
Now, turning back to our generic factor timing model, what accuracy would you need to beat momentum?
Sharpening our Signal
The answer is: not a whole lot. Most of the time, we only need to be about 53% accurate to beat the momentum-based factor timing.
Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
The caveat is that this is the median performance of the simulations. The accuracy figure climbs closer to 60% if we use the 25th percentile as our target.
While these may not seem like extremely high requirements for running a successful factor timing strategy, it is important to observe that not many investors are doing this. True accuracy may be hard to discover, and sticking with the system may be even harder when the true accuracy can never be known.
Conclusion
If you made it this far looking for some rosy news on factor timing or the Holy Grail of how to do it skillfully, you may be disappointed.
However, for most investors looking to generate some modest benefits relative to market-cap equity, there is good news. Any signal for timing factors does not have to be highly accurate to perform well, and in the absence of a signal for timing, a diversified portfolio of the factors can lead to successful results by the metrics of average underperformance and frequency of underperformance.
For those investors looking for higher outperformance, concentration risk will be necessary.
Any timing strategy on low correlation investments will generally forego significant diversification in the pursuit of higher returns.
While this may be the goal when constructing the strategy, we should always pause and determine whether the potential benefits outweigh the costs. Transaction costs may be lower now. However, there are still operational burdens and the potential stress caused by underperformance when a system is not automated or when results are tracked too frequently.
Factor timing may be possible, but timing and tactical rotation may be better suited to scenarios where some of the model risk can be mitigated.
The Dumb (Timing) Luck of Smart Beta
By Corey Hoffstein
On November 18, 2019
In Craftsmanship, Defensive, Momentum, Popular, Portfolio Construction, Risk & Style Premia, Value, Weekly Commentary
This post is available as a PDF download here.
Summary
We’ve written about the concept of rebalance timing luck a lot. It’s a cowbell we’ve been beating for over half a decade, with our first article going back to August 7th, 2013.
As a reminder, rebalance timing luck is the performance dispersion that arises from the choice of a particular rebalance date (e.g. semi-annual rebalances that occur in June and December versus March and September).
We’ve empirically explored the impact of rebalance timing luck as it relates to strategic asset allocation, tactical asset allocation, and even used our own Systematic Value strategy as a case study for smart beta. All of our results suggest that it has a highly non-trivial impact upon performance.
This summer we published a paper in the Journal of Index Investing that proposed a simple solution to the timing luck problem: diversification. If, for example, we believe that our momentum portfolio should be rebalanced every quarter – perhaps as an optimal balance of cost and signal freshness – then we proposed splitting our capital across the three portfolios that spanned different three-month rebalance periods (e.g. JAN-APR-JUL-OCT, FEB-MAY-AUG-NOV, MAR-JUN-SEP-DEC). This solution is referred to either as “tranching” or “overlapping portfolios.”
The paper also derived a formula for estimating timing luck ex-ante, with a simplified representation of:
Where L is the timing luck measure, T is turnover rate of the strategy, F is how many times per year the strategy rebalances, and S is the volatility of a long/short portfolio that captures the difference of what a strategy is currently invested in versus what it could be invested in if the portfolio was reconstructed at that point in time.
Without numbers, this equation still informs some general conclusions:
Bullet points 1 and 3 may seem similar but capture subtly different effects. This is likely best illustrated with two examples on different extremes. First consider a very high turnover strategy that trades within a universe of highly correlated securities. Now consider a very low turnover strategy that is either 100% long or 100% short U.S. equities. In the first case, the highly correlated nature of the universe means that differences in specific holdings may not matter as much, whereas in the second case the perfect inverse correlation means that small portfolio differences lead to meaningfully different performance.
L, in and of itself, is a bit tricky to interpret, but effectively attempts to capture the potential dispersion in performance between a particular rebalance implementation choice (e.g. JAN-APR-JUL-OCT) versus a timing-luck-neutral benchmark.
After half a decade, you’d would think we’ve spilled enough ink on this subject.
But given that just about every single major index still does not address this issue, and since our passion for the subject clearly verges on fever pitch, here comes some more cowbell.
Equity Style Portfolio Definitions
In this note, we will explore timing luck as it applies to four simplified smart beta portfolios based upon holdings of the S&P 500 from 2000-2019:
Quality is a bit more complicated only because the quality factor has far less consistency in accepted definition. Therefore, we adopted the signals utilized by the S&P 500 Quality Index.
For each of these equity styles, we construct portfolios that vary across two dimensions:
For the different rebalance frequencies, we also generate portfolios that represent each possible rebalance variation of that mix. For example, Momentum portfolios with 50 stocks that rebalance annually have 12 possible variations: a January rebalance, February rebalance, et cetera. Similarly, there are 12 possible variations of Momentum portfolios with 100 stocks that rebalance annually.
By explicitly calculating the rebalance date variations of each Style x Holding x Frequency combination, we can construct an overlapping portfolios solution. To estimate empirical annualized timing luck, we calculate the standard deviation of monthly return dispersion between the different rebalance date variations of the overlapping portfolio solution and annualize the result.
Empirical Timing Luck Results
Before looking at the results plotted below, we would encourage readers to hypothesize as to what they expect to see. Perhaps not in absolute magnitude, but at least in relative magnitude.
For example, based upon our understanding of the variables affecting timing luck, would we expect an annually rebalanced portfolio to have more or less timing luck than a quarterly rebalanced one?
Should a more concentrated portfolio have more or less timing luck than a less concentrated variation?
Which factor has the greatest risk of exhibiting timing luck?
Source: Sharadar. Calculations by Newfound Research.
To create a sense of scale across the styles, below we isolate the results for semi-annual rebalancing for each style and plot it.
Source: Sharadar. Calculations by Newfound Research.
In relative terms, there is no great surprise in these results:
What is perhaps the most surprising is the sheer magnitude of timing luck. Consider that the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality portfolios all hold 100 securities and are rebalanced semi-annually. Our study suggests that timing luck for such approaches may be as large as 2.5%, 4.4%, 1.1%, and 2.0% respectively.
But what does that really mean? Consider the realized performance dispersion of different rebalance date variations of a Momentum portfolio that holds the top 100 securities in equal weight and is rebalanced on a semi-annual basis.
Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
The 4.4% estimate of annualized timing luck is a measure of dispersion between each underlying variation and the overlapping portfolio solution. If we isolate two sub-portfolios and calculate rolling 12-month performance dispersion, we can see that the difference can be far larger, as one might exhibit positive timing luck while the other exhibits negative timing luck. Below we do precisely this for the APR-OCT and MAY-NOV rebalance variations.
Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
In fact, since these variations are identical in every which way except for the date on which they rebalance, a portfolio that is long the APR-OCT variation and short the MAY-NOV variation would explicitly capture the effects of rebalance timing luck. If we assume the rebalance timing luck realized by these two portfolios is independent (which our research suggests it is), then the volatility of this long/short is approximately the rebalance timing luck estimated above scaled by the square-root of two.
Derivation: For variations vi and vj and overlapping-portfolio solution V, then:
Thus, if we are comparing two identically-managed 100-stock momentum portfolios that rebalance semi-annually, our 95% confidence interval for performance dispersion due to timing luck is +/- 12.4% (2 x SQRT(2) x 4.4%).
Even for more diversified, lower turnover portfolios, this remains an issue. Consider a 400-stock low-volatility portfolio that is rebalanced quarterly. Empirical timing luck is still 0.5%, suggesting a 95% confidence interval of 1.4%.
S&P 500 Style Index Examples
One critique of the above analysis is that it is purely hypothetical: the portfolios studied above aren’t really those offered in the market today.
We will take our analysis one step further and replicate (to the best of our ability) the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality indices. We then created different rebalance schedule variations. Note that the S&P 500 Low Volatility index rebalances quarterly, so there are only three possible rebalance variations to compute.
Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
We see a meaningful dispersion in terminal wealth levels, even for the S&P 500 Low Volatility index, which appears at first glance in the graph to have little impact from timing luck.
Minimum Terminal Wealth
Maximum Terminal Wealth
$4.45
$5.45
$3.07
$4.99
$6.16
$6.41
$4.19
$5.25
We should further note that there does not appear to be one set of rebalance dates that does significantly better than the others. For Value, FEB-AUG looks best while JUN-DEC looks the worst; for Momentum it’s almost precisely the opposite.
Furthermore, we can see that even seemingly closely related rebalances can have significant dispersion: consider MAY-NOV and JUN-DEC for Momentum. Here is a real doozy of a statistic: at one point, the MAY-NOV implementation for Momentum is down -50.3% while the JUN-DEC variation is down just -13.8%.
These differences are even more evident if we plot the annual returns for each strategy’s rebalance variations. Note, in particular, the extreme differences in Value in 2009, Momentum in 2017, and Quality in 2003.
Source: Sharadar. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Performance assumes the reinvestment of all distributions.
Conclusion
In this study, we have explored the impact of rebalance timing luck on the results of smart beta / equity style portfolios.
We empirically tested this impact by designing a variety of portfolio specifications for four different equity styles (Value, Momentum, Low Volatility, and Quality). The specifications varied by concentration as well as rebalance frequency. We then constructed all possible rebalance variations of each specification to calculate the realized impact of rebalance timing luck over the test period (2000-2019).
In line with our mathematical model, we generally find that those strategies with higher turnover have higher timing luck and those that rebalance more frequently have less timing luck.
The sheer magnitude of timing luck, however, may come as a surprise to many. For reasonably concentrated portfolios (100 stocks) with semi-annual rebalance frequencies (common in many index definitions), annual timing luck ranged from 1-to-4%, which translated to a 95% confidence interval in annual performance dispersion of about +/-1.5% to +/-12.5%.
The sheer magnitude of timing luck calls into question our ability to draw meaningful relative performance conclusions between two strategies.
We then explored more concrete examples, replicating the S&P 500 Enhanced Value, Momentum, Low Volatility, and Quality indices. In line with expectations, we find that Momentum (a high turnover strategy) exhibits significantly higher realized timing luck than a lower turnover strategy rebalanced more frequently (i.e. Low Volatility).
For these four indices, the amount of rebalance timing luck leads to a staggering level of dispersion in realized terminal wealth.
“But Corey,” you say, “this only has to do with systematic factor managers, right?”
Consider that most of the major equity style benchmarks are managed with annual or semi-annual rebalance schedules. Good luck to anyone trying to identify manager skill when your benchmark might be realizing hundreds of basis points of positive or negative performance luck a year.