The Research Library of Newfound Research

Tag: value Page 1 of 4

Index Funds Reimagined?

I recently had the privilege to serve as a discussant at the Democratize Quant 2023 conference to review Research Affliates’s new paper, Reimagining Index Funds.  The post below is a summary of my presentation.

Introduction

In Reimagining Index Funds (Arnott, Brightman, Liu and Nguyen 2023), the authors propose a new methodology for forming an index fund, designed to avoid the “buy high, sell low” behavior that can emerge in traditional index funds while retaining the depth of liquidity and capacity.  Specifically, they propose selecting securities based upon the underlying “economic footprint” of the business.

By using fundamental measures of size, the authors argue that the index will not be subject to sentiment-driven turnover.  In other words, it will avoid those additions and deletions that have primarily been driven by changes in valuation rather than changes in fundamentals.  Furthermore, the index will not arbitrarily avoid securities due to committee bias.  The authors estimate that total turnover is reduced by 20%.

The added benefit to this approach, the authors further argue, is that index trading costs are actually quite large.  While well-telegraphed additions and deletions allow index fund managers to execute market-on-close orders and keep their tracking error low, it also allows other market participants to front run these changes.  The authors’ research suggests that these hidden costs could be upwards of 20 basis points per year, creating a meaningful source of negative alpha.

Methodology & Results

The proposed index construction methodology is fairly simple:

Footnote #3 in the paper further expands upon the four fundamental measures:

The results of this rather simple approach are impressive.

  • Tracking error to the S&P 500 comparable to that of the Russell 1000.
  • Lower turnover than the S&P 500 or the Russell 1000.
  • Statistically meaningful Fama-French-Carhart 4-Factor alpha.

But What Is It?

One of the most curious results of the paper is that despite having a stated value tilt, the realized value factor loading in the Fama-French-Carhart regression is almost non-existent.  This might suggest that the alpha emerges from avoiding the telegraphed front-running of index additions and deletions.

However, many equity quants may notice familiar patterns in the cumulative alpha streams of the strategies.  Specifically, the early years look similar to the results we would expect from a value tilt, whereas the latter years look similar to the results we might expect from a growth tilt.

With far less rigor, we can create a strategy that holds the Russell 1000 Value for the first half of the time period and switches to the Russell 1000 Growth for the second half.  Plotting that strategy versus the Russell 1000 results in a very familiar return pattern. Futhermore, such a strategy would load positively on the value factor for the first half of its life and negatively for the second half of its life, leading a full-period factor regression to conclude zero exposure.

But how could such a dynamic emerge from such a simple strategy?

“Economic Footprint” is a Multi-Factor Tilt

The Economic Footprint variable is described as being an equal-weight metric of four fundamental measures: book value, sales, cash flow, and dividends, all measured as a percentage of all publicly-traded U.S. listed companies.  With a little math (inspired by this presentation from Cliff Asness), we will show that Economic Footprint is actually a mutli-factor screen on both Value and Market-Capitalization.

Define the weight of a security in the market-capitalization weighted index as its market capitalization divided by the total market capitalization of the universe.

If we divide both sides of the Economic Footprint equation by the weight of the security, we find:Some subtle re-arrangements leave us with: The value tilt effectively looks at each security’s value metric (e.g. book-to-price) relative to the aggregate market’s value metric.  When the metric is cheaper, the value tilt will be above 1; when the metric is more expensive, the value tilt will be less than 1.  This value tilt then effectively scales the market capitalization weight.

Importantly, economic footprint does not break the link to market capitalization.

Breaking economic footprint into two constituent parts allows us to get a visual intuition as to how the strategy operates.

In the graphs below, I take the largest 1000 U.S. companies by market capitalization and plot them based upon their market capitalization weight (x-axis) and their value tilt (y-axis).

(To be clear, I have no doubt that my value tilt scores are precisely wrong if compared against Research Affiliates’s, but I have no doubt they are directionally correct.  Furthermore, the precision does not change the logic of the forthcoming argument.)

If we were constructing a capitalization weighted index of the top 500 companies, the dots would be bisected vertically.

As a multi-factor tilt, however, economic footprint leads to a diagonal bisection.

The difference between these two graphs tells us what we are buying and what we are selling in the strategy relative to the naive capitalization-weighted benchmark.

We can clearly see that the strategy sells larg(er) glamour stocks and buys small(er) value stocks.  In fact, by definition, all the stocks bought will be both (1) smaller and (2) “more value” and any of the stocks sold.

This is, definitionally, a size-value tilt.  Why, then, are the factor loadings for size and value so small?

The Crucial Third Step

Recall the third step of the investment methodology: after selecting the companies by economic footprint, they are re-weighted by their market capitalization.  Now consider an important fact we stated above: every company we screen out is, by definition, larger than any company we buy.

That means, in aggregate, the cohort we screen out will have a larger aggregate market cap than the cohort we buy.

Which further means that the cohort we don’t screen out will, definitionally, become proportionally larger.

For example, at the end of April 2023, I estimate that screening on economic footprint would lead to the sale of a cohort of securities with an aggregate market capitalization of $4 trillion and the purchase of a cohort of securities with an aggregate market capitalization of $1.3 trillion.

The cohort that remains – which was $39.5 trillion in aggregate market capitalization – would grow proportionally from being 91% of the underlying benchmark to 97% of our new index.  Mega-cap growth names like Amazon, Google, Microsfot, and Apple would actually get larger based upon this methodology, increasing their collective weights by 120 basis points.

Just as importantly, this overweight to mega-cap tech would be a persistent artifact throughout the 2010s, suggesting why the relative returns may have looked like a growth tilt.

Why Value in 1999?

How, then, does the strategy create value-like results in the dot-com bubble?  The answer appears to lie in two important variables:

  1. What percentage of the capitalization-weighted index is being replaced?
  2. How strongly do the remaining securities lean into a value tilt?

Consider the scatter graph below, which estimates how the strategy may have looked in 1999.  We can see that 40% of the capitalization-weighted benchmark is being screened out, and 64% of the securities that remain have a positive value tilt.  (Note that these figures are based upon numerical count; it would likely be more informative to measure these figures weighted by market capitalization.)

By comparison, in 2023 only 20% of the underlying benchmark names are replaced and of the securities that remain, just 30% have a tilt towards value. These graphics suggest that while a screen on economic footprint creates a definitive size/value tilt, the re-weighting based upon relative market capitalization can lead to dynamic style drift over time.

Conclusion

The authors propose a new approach to index construction that aims to maintain a low tracking error to traditional capitalization-weighted benchmarks, reduce turnover costs, and avoid “buy high, sell low” behavior.  By selecting securities based upon the economic footprint of their respective businesses, the authors find that they are able to produce meaningful Fama-French-Carhart four-factor alpha while reducing portfolio turnover by 20%.

In this post I find that economic footprint is, as defined by the authors, actually a multi-factor tilt based value and market capitalization.  By screening for companies with a high economic footprint, the proposed method introduces a value and size tilt relative to the underlying market capitalization weighted benchmark.

However, the third step of the proposed process, which then re-weights the selected securities based upon their relative market capitalization, will always increase the weight of the securities of the benchmark that were not screened out.  This step creates the potential for meaningful style drift within the strategy over time.

I would argue the reason the factor regression exhibited little-to-no loading on value is that the strategy exhibited a positive value tilt over the first half of its lifetime and a negative value tilt over the second half, effectively cancelling out when evaluated over the full period.  The alpha that emerges, then, may actually be style timing alpha.

While the authors argue that their construction methodology should lead to the avoidance of “buy high, sell low” behavior, I would argue that the third step of the investment process has the potential to lead to just that (or, at the very least, buy high).  We can clearly see that in certain environments, portfolio construction choices can actually swamp intended factor bets.

Whether this methodology actually provides a useful form of style timing, or whether it is an unintended bet in the process that lead to a fortunate, positive ex-post result is an exercise left to other researchers.

Diversification with Portable Beta

This post is available as a PDF download here.

Summary

  • A long/flat tactical equity strategy with a portable beta bond overlay – a tactical 90/60 portfolio – has many moving parts that can make attribution and analysis difficult.
  • By decomposing the strategy into its passive holdings (a 50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we can explore the historical performance of each component and diversification benefits across each piece of the strategy.
  • Using a mean-variance framework, we are also able to construct an efficient frontier of the strategy components and assess the differences between the optimal portfolio and the tactical 90/60.
  • We find that the tactical 90/60 is relatively close to the optimal portfolio for its volatility level and that its drawdown risk profile is close to that of an unlevered 60/40 portfolio.
  • By utilizing a modest amount of leverage and pairing it will risk management in both equities and bonds, investors may be able to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk.

Portable beta strategies seek to enhance returns by overlaying an existing portfolio strategy with complementary exposure to diversifying asset classes and strategies. In overlaying exposure on an existing portfolio strategy, portable beta strategies seek to make every invested dollar work harder. This idea can create “capital efficiency” for investors, freeing up dollars in an investor’s portfolio to invest in other asset classes or investment opportunities.

At Newfound, we focus on managing risk. Trend following – or absolute momentum – is a key approach we employ do this, especially in equities. Trend equity strategies are a class of strategies that aim to harvest the long-term benefits of the equity risk premium while managing downside risk through the application of trend following.

We wrote previously how a trend equity strategy can be decomposed into passive and active components in order to isolate different contributors to performance. There is more than one way to do this, but in the most symmetric formulation, a “long/flat” trend equity strategy (one that that either holds equities or cash; i.e. does not short equities) can be thought of as a 100% passive allocation to a 50/50 portfolio of stocks and cash plus a 50% overlay allocation to a long/short trend equity strategy that can move between fully short and fully long equities. This overlay component is portable beta.

We have also written previously about how a portable beta overlay of bonds can be beneficial to trend equity strategies – or even passive equity investments, for that matter. For example, 95% of a portfolio could be invested in a trend equity strategy, and the remaining 5% could be set aside as collateral to initiate a 60% overlay to 10-year U.S. Treasury futures. This approximates a 60/40 portfolio that is leveraged by 50%

Source: Newfound. Allocations are hypothetical and for illustrative purposes only.

Since this bond investment introduces interest rate risk, we have proposed ways to manage risk in this specific sleeve using factors such as value, carry, and momentum. By treating these factors as fully tactical long/short portfolios themselves, if we hold them in equal weight, we can also break down the tactical U.S. Treasury futures overlay into active and passive components, with a 30% passive position in U.S. Treasury futures and 10% in each of the factor-based strategies.

Source: Newfound. Allocations are hypothetical and for illustrative purposes only.

When each overlay is fully invested, the portfolio will hold 95% stocks, 5% cash, and 60% U.S. Treasury futures. When all the overlays are fully short, the strategy will be fully invested in cash with no bond overlay position.

While the strategy has not changed at all with this slicing and dicing, we now have a framework to explore the historical contributions of the active and passive components and the potential diversification benefits that they offer.

Diversification Among Components

For the passive portfolio 50/50 stock/cash, we will use a blend of the Vanguard Total U.S. stock market ETF (VTI) and the iShares Short-term Treasury Bond ETF (SHV) with Kenneth French data for market returns and the risk-free rate prior to ETF inception.

For the active L/S Trend Equity portfolio, we will use a long/short version of the Newfound U.S. Trend Equity Index.

The passive 10-year U.S. Treasury futures is the continuous futures contract with a proxy of the 10-year constant maturity Treasury index minus the cash index used before inception (January 2000). The active long/short bond factors can be found on the U.S. Treasuries section of our quantitative signals dashboard, which is updated frequently.

All data starts at the common inception point in May 1957.

As a technical side note, we must acknowledge that a constant maturity 10-year U.S. Treasury index minus a cash index will not precisely match the returns of 10-year U.S. Treasury futures. The specification of the futures contracts state that the seller of such a contract has the right to deliver any U.S. Treasury bond with maturity between 6.5 and 10 years. In other words, buyers of this contract are implicitly selling an option, knowing that the seller of the contract will likely choose the cheapest bond to deliver upon maturity (referred to as the “cheapest to deliver”). Based upon the specification and current interest rate levels, that current cheapest to deliver bond tends to have a maturity of 6.5 years.

This has a few implications. First, when you buy U.S. Treasury futures, you are selling optionality. Finance 101 will teach you that optionality has value, and therefore you would expect to earn some premium for selling it. Second, the duration profile between our proxy index and 10-year U.S. Treasury futures has meaningfully diverged in the recent decade. Finally, the roll yield harvested by the index and the futures will also diverge, which can have a non-trivial impact upon returns.

Nevertheless, we believe that for the purposes of this study, the proxy index is sufficient for broad, directional attribution and understanding.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

The 50/50 Stock/Cash portfolio is the only long-only holding. While the returns are lower for all the other strategies, we must keep in mind that they are all overlays that can add to the 50/50 portfolio rather than simply de-risk and cannibalize its return.

This is especially true since these overlay strategies have exhibited low correlation to the 50/50 portfolio.

The table below shows the full period correlation of monthly returns for all the portfolio components. The equity and bond sub-correlation matrices are outlined to highlight the internal diversification.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Not only do all of the overlays have low correlation to the 50/50 portfolio, but they generally exhibit low cross-correlations. Of the overlays, the L/S bond carry and L/S bond momentum strategies have the highest correlation (0.57), and the L/S bond carry and passive bond overlay have the next highest correlation (0.47).

The bond strategies have also exhibited low correlation to the equity strategies. This results in good performance, both absolute and risk-adjusted, relative to a benchmark 60/40 portfolio and a benchmark passive 90/60 portfolio.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Finding the Optimal Blend

Up to this point, we have only considered the fixed allocations to each of the active and passive strategies outlined at the beginning. But these may not be the optimal holdings.

Using a block-bootstrap method to simulate returns, we can utilize mean-variance optimization to determine the optimal portfolios for given volatility levels.1 This yields a resampled historical realized efficient frontier.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

Plotting the benchmark 60/40, benchmark 90/60, and the tactical 90/60 on this efficient frontier, we see that the tactical 90/60 lies very close to the frontier at about 11.5% volatility. The allocations for the frontier are shown below.

 

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

As expected, the lower volatility portfolios hold more cash and the high volatility portfolios hold more equity. For the 9% volatility level, these two allocations match, leading to the full allocation to a 50/50 stock/cash blend as in the tactical 90/60.

The passive allocation to the Treasury futures peaks at about 60%, while the L/S bond factor allocations are generally between 5% and 20% with more emphasis on Value and typically equal emphasis on Carry and Momentum.

The allocations in the point along the efficient frontier that matches the tactical 90/60 portfolio’s volatility are shown below.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

In this portfolio, we see a higher allocation to passive equities, a smaller position in the tactical equity L/S, and a larger position in passive Treasury futures. However, given the resampled nature of the process, these allocations are not wildly far away from the tactical 90/60.

The differences in the allocations are borne out in the Ulcer Index risk metric, which quantifies the severity and duration of drawdowns.

Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results. 

The efficient frontier portfolio has a lower Ulcer Index than that of the tactical 90/60 even though their returns and volatility are similar. However, the Ulcer index of the tactical 90/60 is very close to that of the benchmark 60/40.

These differences are likely due to the larger allocation to the tactical equity long/short which can experience whipsaws (e.g. in October 1987), the lower allocation to passive U.S. equities, and the lower allocation to the Treasury overlay.

In an uncertain future, there can be significant risk in relying too much on the past, but having this framework can be useful for gaining a deeper understanding of which market environments benefit or hurt each component within the portfolio and how they diversify each other when held together.

Conclusion

In this research note, we explored diversification in a long/flat tactical equity strategy with a portable beta bond overlay. By decomposing the strategy into its passive holdings (50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we found that each of the overlays has historically exhibited low correlation to the passive portfolios and low cross-correlations to each other. Combining all of these strategies using a tactical 90/60 portfolio has led to strong performance on both an absolute and risk-adjusted basis.

Using these strategy components, we constructed an efficient frontier of portfolios and also found that the “intuitive” tactical 90/60 portfolio that we have used in much of our portable beta research is close to the optimal portfolio for its volatility level. While this does not guarantee that this portfolio will be optimal over any given time period, it does provide evidence for the robustness of the multi-factor risk-managed approach.

Utilizing portable beta strategies can be an effective way for investors to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk. While leverage can introduce risks of its own, relying on diversification and robust risk-management methods (e.g. trend following) can mitigate the risk of large losses.

The fear of using leverage and derivatives may be an uphill battle for investors, and there are a few operational burdens to overcome, but when used appropriately, these tools can make portfolios work harder and lead to more flexibility for allocating to additional opportunities.

If you are interested in learning how Newfound applies the concepts of tactical portable beta to its mandates, please reach out (info@thinknewfound.com).

Should I Stay or Should I Growth Now?

This post is available as a PDF download here.

Summary

  • Naïve value factor portfolios have been in a drawdown since 2007.
  • More thoughtful implementations performed well after 2008, with many continuing to generate excess returns versus the market through 2016.
  • Since 2017, however, most value portfolios have experienced a steep drawdown in their relative performance, significantly underperforming glamour stocks and the market as a whole.
  • Many investors are beginning to point to the relative fundamental attractiveness of value versus growth, arguing that value is well poised to out-perform going forward.
  • In this research note, we aim to provide further data for the debate, constructing two different value indices (a style-box driven approach and a factor-driven approach) and measuring the relative attractiveness of fundamental measures versus both the market and growth stocks.

 

“Should I stay or should I go now?
If I go, there will be trouble
And if I stay it will be double”

— The Clash

 

It is no secret that quantitative value strategies have struggled as of late.  Naïve sorts – like the Fama-French HML factor – peaked around 2007, but most quants would stick their noses up and say, “See? Craftsmanship matters.”  Composite metrics, industry-specific scoring, sector-neutral constraints, factor-neutral constraints, and quality screens all helped quantitative value investors stay in the game.

Even a basket of long-only value ETFs didn’t peak against the S&P 500 until mid-2014.

Source: Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  The Value ETF basket is an equal-weight portfolio of FVAL, IWD, JVAL, OVLU, QVAL, RPV, VLU, and VLUE, with each ETF being included when it is first available.  Performance of the long/short portfolio is calculated as the monthly return of the Value ETF Basket minus the monthly return of the S&P 500 (“SPY”).

Many strategies were able to keep the mojo going until 2016 or so.  But at that point, the wheels came off for just about everyone.

A decade of under-performance for the most naïve approaches and three-plus years of under-performance for some of the most thoughtful has many people asking, “is quantitative value an outdated idea?  Should we throw in the towel and just buy growth?”

Of course, it should come as no surprise that many quantitative value managers are now clamoring that this is potentially the best time to invest in value since the dot-com bubble.  “No pain, no premium,” as we like to say.

Nevertheless, the question of value’s attractiveness itself is muddied for a variety of reasons:

  • How are we defining value?
  • Are we talking about long/short factors or long-only implementations?
  • Are we talking about the style-box definition or the factor definition of value?

By no means will this commentary be a comprehensive evaluation as to the attractiveness of Value, but we do hope to provide some more data for the debate.

Replicating Style-Box Growth and Value

If you want the details of how we are defining Growth and Value, read on.  Otherwise, you can skip ahead to the next section.

Morningstar invented the style box back in the early 1990s.  Originally, value was simply defined based upon price-to-book and price-to-earnings.  But somewhere along the line, things changed.  Not only was the definition of value expanded to include more metrics, but growth was given an explicit set of metrics to quantify it, as well.

The subtle difference here is rather than measuring cheap versus expensive, the new model more explicitly attempted to capture value versus growth.  The problem – at least in my opinion – is that the model makes it such that the growth-iest fund is now the one that simultaneously ranks the highest on growth metrics and the lowest on value metrics.  Similarly, the value-iest fund is the one that ranks the highest on value metrics and the lowest on growth metrics.  So growth is growing but expensive and value is cheap but contracting.

The index providers took the same path Morningstar did.  For example, while MSCI originally defined value and growth based only upon price-to-book, they later amended it to include not only other value metrics, but growth metrics as well.  S&P Dow Jones and FTSE Russell follow this same general scheme.  Which is all a bit asinine if you ask me.1

Nevertheless, it is relevant to the discussion as to whether value is attractive or not, as value defined by a style-box methodology can differ from value as defined by a factor methodology.  Therefore, to dive under the hood, we created our own “Frankenstein’s style-box” by piecing together different components of S&P Dow Jones’, FTSE Russell’s, and MSCI’s methodologies.

  • The parent universe is the S&P 500.
  • Growth metrics are 3-year earnings-per-share growth, 3-year revenue-per-share growth, internal growth rate2, and 12-month price momentum.3
  • Value metrics are book-to-price4, earnings-to-price5, free-cash-flow-to-price, and sales-to-enterprise-value6.
  • Metrics are all winsorized at the 90th percentile.
  • Z-scores for each Growth and Value metric are calculated using market-capitalization weighted means and standard deviations.
  • An aggregate Growth and Value score is calculated for each security as the sum of the underlying style z-scores.

From this point, we basically follow MSCI’s methodology.  Each security is plotted onto a “style space” (see image below) and assigned value and growth inclusion factors based upon the region it falls into.  These inclusion factors represent the proportion of a security’s market cap that can be allocated to the Value or Growth index.

Securities are then sorted by their distance from the origin point.  Starting with the securities that are furthest from the origin (i.e. those with more extreme style scores), market capitalizations are proportionally allocated to Value and Growth based upon their inclusion factors.  Once one style hits 50%, the remaining securities are allocated to the other style regardless of inclusion factors.

Source: MSCI.

The result of this process is that each style represents approximately 50% of the total market capitalization of the S&P 500.  The market capitalization for each security will be fully represented in the combination of growth and value and may even be represented in both Value and Growth as a partial weight (though never double counted).

Portfolios are rebalanced semi-annually using six overlapping portfolios.

How Attractive is Value?

To evaluate the relative attractiveness of Growth versus Value, we will evaluate two approaches.

In the first approach, we will make the assumption that fundamentals will not change but prices will revert.  In this approach, we will plot the ratio of price-to-fundamental measures (e.g. price-to-earnings of Growth over price-to-earnings of Value) minus 1.  This can be thought of as how far price would have to revert between the two indices before valuations are equal.

As an example, consider the following two cases.  First, Value has an earnings yield of 2% and Growth has an earnings yield of 1%.  In this case, both are expensive (Value has a P/E of 50 and Growth has a P/E of 100), but the price of Value would have to double (or the price of Growth would have to get cut in half) for their valuations to meet.  As a second case, Value has an earnings yield of 100% and Growth has an earnings yield of 50%.  Both are very cheap, but we would still have to see the same price moves for their fundamentals to meet.

For our second approach, we will assume prices and fundamentals remain constant and ask the question, “how much carry do I earn for this trade?”  Specifically, we will measure shareholder yield (dividend yield plus buyback yield) for each index and evaluate the spread.

In both cases, we will decompose our analysis into Growth versus the Market and the Market versus Value to gain a better perspective as to how each leg of the trade is influencing results.

Below we plot the relative ratio for price-to-book, price-to-earnings, price-to-free-cash-flow, and price-to-sales.

Source: Sharadar.  Calculations by Newfound Research.

A few things stand out:

  • The ratio of Growth’s price-to-book versus the S&P 500’s price-to-book appears to be at 2000-level highs. Even the ratio of the S&P 500’s price-to-book versus Value’s price-to-book appears extreme.  However, the interpretation of this data is heavily reliant upon whether we believe price-to-book is still a relevant valuation metric.  If not, this result may simply be a byproduct of naïve value construction loading up on financials and ignoring technology companies, leading to an artificially high spread.  The fact that Growth versus the S&P 500 has far out-stripped the S&P 500 versus Value in this metric might suggest that this result might just be caused Growth loading up on industries where the market feels book value is no longer relevant.
  • The ratio of price-to-earnings has certainly increased in the past year for both Growth versus the S&P 500 and the S&P 500 versus Value, suggesting an even larger spread for Growth versus Value. We can see, however, that we are still a far way off from 2000 highs.
  • Ratios for free cash flows actually look to be near 20-year lows.
  • Finally, we can see that ratios in price-to-sales have meaningfully increased in the last few years. Interestingly, Growth versus the S&P 500 has climbed much faster than the S&P 500 versus Value, suggesting that moving from Growth to the S&P 500 may be sufficient for de-risking against reversion.  Again, while these numbers sit at decade highs, they are still well below 2000-era levels.

Below we plot our estimate of carry (i.e. our return expectation given no change in prices): shareholder yield.  Again, we see recent-era highs, but levels still well below 2000 and 2008 extremes.

Source: Sharadar.  Calculations by Newfound Research.

Taken all together, value certainly appears cheaper – and a trade we likely would be paid more to sit on than we had previously – but a 2000s-era opportunity seems a stretch.

Growth is not Glamour

One potential flaw in the above analysis is that we are evaluating “Value 1.0” indices.  More modern factor indices drop the “not Growth” aspect of defining value, preferring to focus only on valuation metrics.  Therefore, to acknowledge that investors today may be evaluating the choice of a Growth 1.0 index versus a modern Value factor index, we repeat the above analysis using a Value strategy more consistent with current smart-beta products.

Specifically, we winsorize earnings yield, free-cash-flow yield, and sales yield and then compute market-cap-weighted z-scores.  A security’s Value score is then equal to its average z-score across all three metrics with no mention of growth scores.  The strategy selects the securities in the top quintile of Value scores and weights them in proportion to their value-score-scaled market capitalization.  The strategy is rebalanced semi-annually using six overlapping portfolios.

Source: Sharadar.  Calculations by Newfound Research.

We can see:

  • In the Value 1.0 approach, moving from Growth appeared much more expensive versus the S&P 500 than the S&P 500 did versus Value. With a more concentrated approach, the S&P 500 now appears far more expensive versus Value than Growth does versus the S&P 500.
  • Relative price-to-book (despite price-to-book no longer being a focus metric) still appears historically high. While it peaked in Q3 2019, meaningful reversion could still occur.  All the same caveats as before apply, however.
  • Relative price-to-earnings did appear to hit multi-decade highs (excluding the dot-com era) in early 2019. If the prior 6/2016-to-2/2018 reversion is the playbook, then we appear to be halfway home.
  • Relative price-to-free-cash-flow and price-to-sales are both near recent highs, but both below 2008 and dot-com era levels.

Plotting our carry for this trade, we do see a more meaningful divergence between Value and Growth.  Furthermore, the carry for bearing Value risk does appear to be at decade highs; however it is certainly not at extreme levels and it has actually reverted from Q3 2019 highs.

Source: Sharadar.  Calculations by Newfound Research.

Conclusion

In this research note, we sought to explore the current value-of-value.  Unfortunately, it proves to be an elusive question, as the very definition of value is difficult to pin down.

For our first approach, we build a style-box driven definition of Value.  We then plot the relative ratio of four fundamental measures – price-to-book, price-to-earnings, price-to-sales, and price-to-free-cash-flow – of Growth versus the S&P 500 and the S&P 500 versus Value.  We find that both Growth and the S&P 500 look historically expensive on price-to-book and price-to-earnings metrics (implying that Value is very, very cheap), whereas just Growth looks particularly expensive for price-to-sales (implying that Value may not be cheap relative to the Market).  However, none of the metrics look particularly cheap compared to the dot-com era.

We also evaluate Shareholder Yield as a measure of carry, finding that Value minus Growth reached a 20-year high in 2019 if the dot-com and 2008 periods are excluded.

Recognizing that many investors may prefer a more factor-based definition of value, we run the same analysis for a more concentrated value portfolio.  Whereas the first analysis generally pointed to Growth versus the S&P 500 being more expensive than the S&P 500 versus Value trade, the factor-based approach finds the opposite conclusion. Similar to the prior results, Value appears historically cheap for price-to-book, price-to-earnings, and price-to-sales metrics, though it appears to have peaked in Q3 2019.

Finally, the Shareholder Yield spread for the factor approach also appears to be at multi-decade highs ignoring the dot-com and 2008 extremes.

Directionally, this analysis suggests that Value may indeed be cheaper-than-usual.  Whether that cheapness is rational or not, however, is only something we’ll know with the benefit of hindsight.

For further reading on style timing, we highly recommend Style Timing: Value vs Growth (AQR).  For more modern interpretations: Value vs. Growth: The New Bubble (QMA), It’s Time for a Venial Value-Timing (AQR), and Reports of Value’s Death May Be Greatly Exaggerated (Research Affiliates).

 


 

Re-specifying the Fama French 3-Factor Model

This post is available as a PDF download here.

Summary­

  • The Fama French three-factor model provides a powerful tool for assessing exposures to equity risk premia in investment strategies.
  • In this note, we explore alternative specifications of the value (HML) and size (SMB) factors using price-to-earnings, price-to-cash flow, and dividend yield.
  • Running factor regressions using these alternate specifications on a suite of value ETFs and Newfound’s Systematic Value strategy, lead to a wide array of results, both numerically and directionally.
  • While many investors consider the uncertainty of the parameter estimates from the regression using the three-factor model, most do not consider the uncertainty that comes from the assumption of how you construct the equity factors in the first place.
  • Understanding the additional uncertainty is crucial for manager and investors who must consider what risks they are trying to measure and control by using tools like factor regression and make sure their assumptions align with their goals.

In their 1992 paper, The Cross-Section of Expected Stock Returns, Eugene Fama and Kenneth French outlined their three-factor model to explain stock returns.

While the Capital Asset Pricing Model (CAPM) only describes asset returns in relation to their exposure to the market’s excess return through the stock’s beta and identifies any return beyond that as alpha, Fama and French’s three-factor model reattributed some of that supposed alpha to exposures to a value factor (High-minus-low or HML) based on returns stratified by price-to-book ratios and a size factor (small-minus-big or SMB) based on returns stratified by market capitalization.

This gave investors a tool to judge investment strategies based on the loadings to these risk factors. A manager with a seemingly high alpha may have simply been investing in value and small-cap stocks historically.

The notion of compensated risk premia has also opened the floodgate of many additional factors from other researchers (such as momentum, quality, low beta, etc.) and even two more factors from Fama and French (investment and profitability).

A richer factor universe opens up a wide realm of possibilities for analysis and attribution. However, setting further developments aside and going back to the original three-factor model, we would be remiss if we didn’t dive a bit further into its specification.

At the highest level, we agree with treating “value” and “size” as risk factors, but there is more than one way to skin a factor.

What is “value”?

Fama and French define it using the price-to-book ratio of a stock. This seems legitimate for a broad swath of stocks, especially those that are very capital intensive – such as energy, manufacturing, and financial firms – but what about industries that have structurally lower book values and may have other potential price drivers? For example, a technology company might have significant intangible intellectual property and some utility companies might employ leverage, which decreases their book value substantially.

To determine value in these sectors, we might utilize ratios that account for sales, dividends, or earnings. But then if we analyzed these strategies using the Fama French three-factor model as it is specified, we might misjudge the loading on the value factor.

“Size” seems more straightforward. Companies with low market capitalizations are small. However, when we consider how the size factor is defined based on the value factor, there might even be some differences in SMB using different value metrics.

In this commentary, we will explore what happens when we alter the definition of value for the value factor (and hence the size factor) and see how this affects factor regressions of a sample of value ETFs along with our Systematic Value strategy.

HML Factor Definitions

In the standard version of the Fama French 3-factor model, HML is constructed as a self-financing long/short portfolio using a 2×3 sort on size and value. The investment universe is split in half based on market capitalization and in three parts (30%/40%/30%) based on valuation, in this base case, price-to-book ratio.

Using additional data from the Kenneth French Data Library and the same methodology, we will construct HML factors using sorts based on size and:

  • Price-to-earnings ratios
  • Price-to-cash flow ratios
  • Dividend yields

The common inception date for all the factors is June 1951.

The chart below shows the growth of each of the four value factor portfolios.

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Over the entire time period – and for many shorter time horizons – the standard HML factor using price-to-book does not even have the most attractive returns. Price-to-earnings and price-to-cash flow often beat it out.

On the other hand, the HML factor formed using dividend yields doesn’t look so hot.

One of the reasons behind this is that the small, low dividend yield companies performed much better than the small companies that were ranked poorly by the other value factors. We can see this effect borne out in the SMB chart for each factor, as the SMB factor for dividend yield performed the best.

(Recall that we mentioned previously how the Fama French way of defining the size factor is dependent on which value metric we use.)

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.

Looking at the statistical significance of each factor through its t-statistic, we can see that Price-to-Earnings and Price-to-Cash Flow yielded higher significance for the HML factor than Price-to-Book. And those two along with Dividend Yield all eclipsed the Price-to-Book construction of the SMB factor.

T-Statistics for HML and SMB Using Various Value Metrics

 Price-to-BookDividend YieldPrice-to-EarningsPrice-to-Cash Flow
HML2.90.03.73.4
SMB1.02.41.61.9

Assuming that we do consider all metrics to be appropriate ways to assess the value of companies, even if possibly under different circumstances, how do different variants of the Fama French three-factor model change for each scenario with regression analysis?

The Impact on Factor Regressions

Using a sample of U.S. value ETFs and our Systematic Value strategy, we plot the loadings for the different versions of HML. The regressions are carried out using the trailing three years of monthly data ending on October 2019.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

For each different specification of HML, the differences in the loading between investments is generally directionally consistent. For instance, DVP has higher loadings than FTA for all forms of HML.

However, sometimes this is not the case.

VLUE looks more attractive than VTV based on price-to-cash flow but not dividend yield. FTA is roughly equivalent to QVAL in terms of loading when price-to-book is used for HML, but it varies wildly when other metrics are used.

The tightest range for the four models for any of the investments is 0.09 (PWV) and the widest is 0.52 (QVAL). When we factor in that these estimates each have their own uncertainty, distinguishing which investment has the better value characteristic is tough. Decisions are commonly made on much smaller differences.

We see similar dispersion in the SMB loadings for the various constructions.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

Many of these values are not statistically significant from zero, so someone who has a thorough understanding of uncertainty in regression would likely not draw a strict comparison between most of these investments.

However, one implication of this is that if a metric is chosen that does ascribe significant size exposure to one of these investments, an investor may make a decision based on not wanting to bear that risk in what they desire to be a large-cap investment.

Can We Blend Our Way Out?

One way we often mitigate model specification risk is by blending a number of models together into one.

By averaging all of our HML and SMB factors, respectively, we arrive at blended factors for the three-factor model.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

All of the investments now have HML loadings in the top of their range of the individual model loadings, and many (FTA, PWV, RPV, SPVU, VTV, and the Systematic Value strategy) have loadings to the blended HML factor that exceed the loadings for all of the individual models.

The opposite is the case for the blended SMB factor: the loadings are in the low-end of the range of the individual model loadings.

Source: Tiingo, Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Returns represent live strategy results. Returns for the Newfound Systematic Value strategy are gross of all management fees and taxes, but net of execution fees.  Returns for ETFs included in study are gross of any management fees, but net of underlying ETF expense ratios.  Returns assume the reinvestment of all distributions.

So which is the correct method?

That’s a good question.

For some investments, it is situation-specific. If a strategy only uses price-to-earnings as its value metric, then putting it up against a three-factor model using the P/E ratio to construct the factors is appropriate for judging the efficacy of harvesting that factor.

However, if we are concerned more generally about the abstract concept of “value”, then the blended model may be the best way to go.

Conclusion

In this study, we have explored the impact of model specification for the value and size factor in the Fama French three-factor model.

We empirically tested this impact by designing a variety of HML and SMB factors based on three additional value metrics (price-to-earnings, price-to-cash flow, and dividend yield). These factors were constructed using the same rules as for the standard method using price-to-book ratios.

Each factor, with the possible exceptions of the dividend yield-based HML, has performance that could make it a legitimate specification for the three-factor model over the time that common data is available.

Running factor regressions using these alternate specifications on a suite of value ETFs and Newfound’s Systematic Value strategy, led to a wide array of results, both numerically and directionally.

While many investors consider the uncertainty of the parameter estimates from the regression using the three-factor model, most do not consider the uncertainty that comes from the assumption of how you construct the equity factors in the first place.

Understanding the additional uncertainty is crucial for decision-making. Managers and investors alike must consider what risks they are trying to measure and control by using tools like factor regression and make sure their assumptions align with their goals.

“Value” is in the eye of the beholder, and blind applications of two different value factors may lead to seeing double conclusions.

The Limit of Factor Timing

This post is available as a PDF download here.

Summary­

  • We have shown previously that it is possible to time factors using value and momentum but that the benefit is not large.
  • By constructing a simple model for factor timing, we examine what accuracy would be required to do better than a momentum-based timing strategy.
  • While the accuracy required is not high, finding the system that achieves that accuracy may be difficult.
  • For investors focused on managing the risks of underperformance – both in magnitude and frequency – a diversified factor portfolio may be the best choice.
  • Investors seeking outperformance will have to bear more concentration risk and may be open to more model risk as they forego the diversification among factors.

A few years ago, we began researching factor timing – moving among value, momentum, low volatility, quality, size etc. – with the hope of earning returns in excess not only of the equity market, but also of buy-and-hold factor strategies.

To time the factors, our natural first course of action was to exploit the behavioral biases that may create the factors themselves. We examined value and momentum across the factors and used these metrics to allocate to factors that we expected to outperform in the future.

The results were positive. However, taking into account transaction costs led to the conclusion that investors were likely better off simply holding a diversified factor portfolio.

We then looked at ways to time the factors using the business cycle.

The results in this case were even less convincing and were a bit too similar to a data-mined optimal solution to instill much faith going forward.

But this evidence does not necessarily remove the temptation to take a stab at timing the factors, especially since explicit transactions costs have been slashed for many investors accessing long-only factors through ETFs.Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

After all, there is a lot to gain by choosing the right factors. For example, in the first 9 months of 2019, the spread between the best (Quality) and worst (Value) performing factors was nearly 1,000 basis points (“bps”). One month prior, that spread had been double!

In this research note, we will move away from devising a systematic approach to timing the factors (as AQR asserts, this is deceptively difficult) and instead focus on what a given method would have to overcome to achieve consistent outperformance.

Benchmarking Factor Timing

With all equity factor strategies, the goal is usually to outperform the market-cap weighted equity benchmark.

Since all factor portfolios can be thought of as a market cap weighted benchmark plus a long/short component that captures the isolated factor performance, we can focus our study solely on the long/short portfolio.

Using the common definitions of the factors (from Kenneth French and AQR), we can look at periods over which these self-financing factor portfolios generate positive returns to see if overlaying them on a market-cap benchmark would have added value over different lengths of time.1

We will also include the performance of an equally weighted basket of the four factors (“Blend”).

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The persistence of factor outperformance over one-month periods is transient. If the goal is to outperform the most often, then the blended portfolio satisfies this requirement, and any timing strategy would have to be accurate enough to overcome this already existing spread.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The results for the blended portfolio are so much better than the stand-alone factors because the factors have correlations much lower than many other asset classes, allowing even naïve diversification to add tremendous value.

The blended portfolio also cuts downside risk in terms of returns. If the timing strategy is wrong, and chooses, for example, momentum in an underperforming month, then it could take longer for the strategy to climb back to even. But investors are used to short periods of underperformance and often (we hope) realize that some short-term pain is necessary for long-term gains.

Looking at the same analysis over rolling 1-year periods, we do see some longer periods of factor outperformance. Some examples are quality in the 1980s, value in the mid-2000s, momentum in the 1960s and 1990s, and size in the late-1970s.

However, there are also decent stretches where the factors underperform. For example, the recent decade for value, quality in the early 2010s, momentum sporadically in the 2000s, and size in the 1980s and 1990s. If the timing strategy gets stuck in these periods, then there can be a risk of abandoning it.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

Again, a blended portfolio would have addressed many of these underperforming periods, giving up some of the upside with the benefit of reducing the risk of choosing the wrong factor in periods of underperformance.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

And finally, if we extend our holding period to three years, which may be used for a slower moving signal based on either value or the business cycle, we see that the diversified portfolio still exhibits outperformance over the most rolling periods and has a strong ratio of upside to downside.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

The diversified portfolio stands up to scrutiny against the individual factors but could a generalized model that can time the factors with a certain degree of accuracy lead to better outcomes?

Generic Factor Timing

To construct a generic factor timing model, we will consider a strategy that decides to hold each factor or not with a certain degree of accuracy.

For example, if the accuracy is 50%, then the strategy would essentially flip a coin for each factor. Heads and that factor is included in the portfolio; tails and it is left out. If the accuracy is 55%, then the strategy will hold the factor with a 55% probability when the factor return is positive and not hold the factor with the same probability when the factor return is negative. Just to be clear, this strategy is constructed with look-ahead bias as a tool for evaluation.

All factors included in the portfolio are equally weighted, and if no factors are included, then the returns is zero for that period.

This toy model will allow us to construct distributions to see where the blended portfolio of all the factors falls in terms of frequency of outperformance (hit rate), average outperformance, and average underperformance. The following charts show the percentiles of the diversified portfolio for the different metrics and model accuracies using 1,000 simulations.2

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

In terms of hit rate, the diversified portfolio behaves in the top tier of the models over all time periods for accuracies up to about 57%. Even with a model that is 60% accurate, the diversified portfolio was still above the median.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average underperformance, the diversified portfolio also did very well in the context of these factor timing models. The low correlation between the factors leads to opportunities for the blended portfolio to limit the downside of individual factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For average outperformance, the diversified portfolio did much worse than the timing model over all time horizons. We can attribute this also to the low correlation between the factors, as choosing only a subset of factors and equally weighting them often leads to more extreme returns.

Overall, the diversified portfolio manages the risks of underperformance, both in magnitude and in frequency, at the expense of sacrificing outperformance potential. We saw this in the first section when we compared the diversified portfolio to the individual factors.

But if we want to have increased return potential, we will have to introduce some model risk to time the factors.

Checking in on Momentum

Momentum is one model-based way to time the factors. Under our definition of accuracy in the toy model, a 12-1 momentum strategy on the factors has an accuracy of about 56%. While the diversified portfolio exhibited some metrics in line with strategies that were even more accurate than this, it never bore concentration risk: it always held all four factors.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

For the hit rate percentiles of the momentum strategy, we see a more subdued response. Momentum does not win as much as the diversified portfolio over the different time periods.

But not winning as much can be fine if you win bigger when you do win.

The charts below show that momentum does indeed have a higher outperformance percentile but with a worse underperformance percentile, especially for 1-month periods, likely due to mean reversionary whipsaw.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. Data from July 1957 – September 2019.

While momentum is definitely not the only way to time the factors, it is a good baseline to see what is required for higher average outperformance.

Now, turning back to our generic factor timing model, what accuracy would you need to beat momentum?

Sharpening our Signal

The answer is: not a whole lot. Most of the time, we only need to be about 53% accurate to beat the momentum-based factor timing.

Source: Kenneth French Data Library, AQR. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

The caveat is that this is the median performance of the simulations. The accuracy figure climbs closer to 60% if we use the 25th percentile as our target.

While these may not seem like extremely high requirements for running a successful factor timing strategy, it is important to observe that not many investors are doing this. True accuracy may be hard to discover, and sticking with the system may be even harder when the true accuracy can never be known.

Conclusion

If you made it this far looking for some rosy news on factor timing or the Holy Grail of how to do it skillfully, you may be disappointed.

However, for most investors looking to generate some modest benefits relative to market-cap equity, there is good news. Any signal for timing factors does not have to be highly accurate to perform well, and in the absence of a signal for timing, a diversified portfolio of the factors can lead to successful results by the metrics of average underperformance and frequency of underperformance.

For those investors looking for higher outperformance, concentration risk will be necessary.

Any timing strategy on low correlation investments will generally forego significant diversification in the pursuit of higher returns.

While this may be the goal when constructing the strategy, we should always pause and determine whether the potential benefits outweigh the costs. Transaction costs may be lower now. However, there are still operational burdens and the potential stress caused by underperformance when a system is not automated or when results are tracked too frequently.

Factor timing may be possible, but timing and tactical rotation may be better suited to scenarios where some of the model risk can be mitigated.

Page 1 of 4

Powered by WordPress & Theme by Anders Norén