This post is available as a PDF download here.
Summary
- The convex payoff profile of trend following strategies naturally lends itself to comparative analysis with option strategies. Unlike options, however, the payout of trend following is not guaranteed.
- To compare and contrast the two approaches, we replicate simple trend following strategies with corresponding option straddle strategies.
- While trend-following has no explicit up-front cost, it also bears the full brunt of any price reversals. The straddle-based approach, on the other hand, pays an explicit cost to insure against sudden and large reversals.
- This transformation of whipsaw risk into an up-front option premium can be costly during strongly trending market environments where the option buyer would have been rewarded more for setting a higher deductible for their implicit insurance policy and paying a lower premium.
- From 2005-2020, avoiding this upfront premium was beneficial. The sudden loss of equity markets in March 2020, however, allowed straddle-based approaches to make up for 15-years of relative underperformance in a single month.
- Whether an investor wishes to avoid these up-front costs or pay them is ultimately a function of the risks they are willing to bear. As we like to say, “risk cannot be destroyed, only transformed.”
We often repeat the mantra that, “risk cannot be destroyed, only transformed.” While not being able to destroy risk seems like a limitation, the assertion that risk can be transformed is nearly limitless.
With a wide variety of investment options, investors have the ability to mold, shape, skew, and shift their risks to fit their preferences and investing requirements (e.g. cash flows, liquidity, growth, etc.).
The payoff profile of a strategy is a key way in which this transformation of risk manifests, and the profile of trend following is one example that we have written much on historically. The convex payoff of many long/short trend following strategies is evident from the historical payoff diagram.
Source: Newfound Research. Payoff Diversification (February 10th, 2020). Source: Kenneth French Data Library; Federal Reserve Bank of St. Louis. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. The 60/40 portfolio is comprised of a 60% allocation to broad U.S. equities and a 40% allocation to a constant maturity 10-Year U.S. Treasury index. The momentum portfolio is rebalanced monthly and selects the asset with the highest prior 12-month returns whereas the buy-and-hold variation is allowed to drift over the 1-year period. The 10-Year U.S. Treasuries index is a constant maturity index calculated by assuming a 10-year bond is purchased at the beginning of every month and sold at the end of that month to purchase a new bond at par at the beginning of the next month. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
This characteristic “V” shape in the diagram is reminiscent of an option straddle, where an investor buys a put and call option of the same maturity struck at the same price. This position allows the investor to profit if the price of the underlying security moves significantly in either direction, but they pay for this opportunity in the option premiums.
The similarity of these payoff profiles is no coincidence. As we demonstrated in Trend – Convexity and Premium (February 11th, 2019), simple total return trend following signals coarsely approximate the delta of the straddle. For those less familiar with the parlance of options, delta is the sensitivity in the value of the options to changes in the underlying stock. For example, if delta is +1, then the value of the option position will match price changes in the underlying dollar-for-dollar. If delta is -1, then the position will lose $1 for every dollar gained in the underlying and vice versa (i.e. the position is effectively short).
How does this connection arise? Consider a naïve S&P 500 trend strategy that rebalances monthly and uses 12-month total returns as a trend signal, buying when prior returns are positive and shorting when prior returns are negative. The key components of this strategy are today’s S&P 500 level and the level 12 months ago.
Now consider a strategy that buys a 1-month straddle with a strike equal to the level of the S&P 500 12 months ago. When the current level is above the strike, the strategy’s delta will be positive and when the level is below the strike, the delta will be negative. What we can see is that the sensitivity of our options trade to changes in the S&P 500 will match the sign of the trend strategy!
There are two key differences, however. First, our trend strategy was designed to always be 100% long or 100% short, whereas the straddle’s sensitivity can vary between -100% and 100%. Second, the trend strategy cannot change its exposure intramonth whereas the straddle will. In fact, if price starts above the strike price (a positive trend) but ultimately ends below – so far as it is sufficiently far that we can make up for the premium paid for our options – the straddle can still profit!
In this commentary, we will compare and contrast the trend and option-based approaches for a variety of lookback horizons.
Methodology and Data
For this analysis, we will use the S&P 500 index for equity returns, the iShares Short-term U.S. Treasury Bond ETF (ticker: SHV) as the risk-free rate, and monthly options data on the S&P 500 (SPX options).
The long/short trend equity strategy looks at total returns of equities over a given number of months. If this return is positive, the strategy invests in equities for the following month. If the return is negative, the strategy shorts equities for the following month and earns the short-term Treasury rate on the cash. The strategy is rebalanced monthly on the third Friday of each month to coincide with the options expiration dates.
For the (semi-equivalent) straddle replication, at the end of each month we purchase a call option and a put option struck at the level of the S&P 500 at the beginning of the lookback window of the trend following strategy. We can also back out the strike price using the current trend signal value and S&P 500. For example, if the trend signal is 25% and the S&P 500 is trading at $3000, we would set the strike of the options at $2400.
The options account is assumed to be fully cash collateralized. Any premium is paid on the options roll date, interest is earned on the remaining account balance, and the option payout is realized on the next roll date.
To value the options, we employ Black-Scholes pricing on an implied volatility surface derived from available out-of-the money options. Specifically, on a given day we fit a parabola to the implied variances versus log-moneyness (i.e. log(strike/price)) of the options for each time to maturity.
In prior research, we created straddle-derived trend-following models by purchasing S&P 500 exposure in proportion to the delta of the strategy. To calculate delta, we had previously priced the options using 21-day realized volatility as a proxy for implied volatility. This generally leads to over-pricing the options during crisis times and underpricing during more tame market environments, especially for deeper out of the money puts. In this commentary we are actually purchasing the straddles and holding them for one month.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Straddle vs. Trend Following
Below we plot the ratio of the equity curves for the straddle strategies versus their corresponding trend following strategies. When the line is increasing, the straddle strategy is out-performing, and when the line is decreasing the trend strategy is out-performing.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
We can see, generally, that trend following out-performed the explicit purchase of options for almost all lookback periods for the majority of the 15-year test period.
It is only with the most recent expiration – March 20, 2020 – that many of the straddle strategies came to out-perform their respective trend strategies. With the straddle strategy, we pay an explicit premium to help insure our position against sudden and large intra-month price reversals. This did not occur very frequently during the 15 year history, but was very valuable protection in March when the trend strategies were largely still long coming off markets hitting all-time-highs in late February.
Shorter-term lookbacks fared particularly well during that month, as the trend following strategy was in a long position on the February 2020 options expiry date, and the straddles set by the short-term lookback window were relatively cheap from a historical perspective.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Note the curious case of the 14-month lookback. Entering March, the S&P 500 was +45% over a 14-month lookback (almost perfectly anchored to December 2018 lows). Therefore, the straddle was struck so deep in the money that it did not create any protection against the market’s sudden and large drawdown.
Prior to March 2020, only the 8- and 15-month lookback window strategies had outperformed their corresponding trend following strategies. In both cases, it was just barely and just recently.
Another interesting point to note is that longer-term straddle strategies (lookbacks greater than 9 months) shared similar movements during many periods while shorter-term lookbacks (3-6 months) showed more dispersion over time.
Overall, many of the straddles exhibit more “crisis alpha” than their trend following counterparts. This is an explicit risk we pay to hedge with the straddle approach and a fact we will discuss in more detail later on.
How Equity Movements Affect Straddles
Before we move into a discussion of how we can frame the straddle strategies, it will be helpful to revisit how straddles are affected by changing equity prices and how this effect changes with different lookback windows for the strategies.
Consider the delta of a straddle versus how far away price is from the strike (normalized by volatility).
Naively, we might consider that the longer our trend lookback window – and therefore the further back in time we set our strike price – the further away from the strike that price has had the opportunity to move. Consider two extremes: a strike set equal to the price of the S&P 500 10 years ago versus one set a day ago. We would expect that today’s price is much closer to that from a day ago than 10 years ago.
Therefore, for a longer lookback horizon we might expect that there is a greater chance that the straddle is currently deeper in the money, leading to a delta closer to +/- 1. In the case of straddles struck at index levels more recently realized, it is more likely that price is close to at the money, leading to deltas closer to 0.
This also means that while the trend following strategy is taking a binary bet, the straddle is able to modulate exposure to equity moves when the trend is less pronounced. For example, if a 12-month trend signal is +1%, the trend model will retain a +1 exposure while the delta of the straddle may be closer to 0.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Additionally, when the delta of a straddle is closer to zero, its gamma is higher. Gamma reflects how quickly the straddle’s sensitivity to changes in the underlying asset – i.e. the delta – will change. The trend strategy has no intra-month gamma, as once the position is set it remains static until the next rebalance.
As we generally expect the straddles struck longer ago to be deeper in the money than those struck more recently, we would also expect them to have lower gamma.
This also serves to nicely connect trend speed with the length of the lookback window. Shorter lookback windows are associated with trend models that change signals more rapidly while longer lookback windows are slower. Given that a total return trend signal can be thought of as the average of daily log returns, we would expect a longer lookback to react more slowly to recent changes than a shorter lookback because the longer lookback is averaging over more data.
But if we think of it through the lens of options – that the shorter lookback is coarsely replicating the delta of a straddle struck more recently – then the ideas of speed and gamma become linked.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
The Straddle Strategy as an Insurance Policy
One of the key differences between the trend strategy and the straddle is that the straddle has features that act as insurance against price reversals. As an example, consider a case where the trend strategy has a positive signal. To first replicate the payoff, the straddle strategy buys an in-the-money call option. This is the first form of insurance, as the total amount this position can lose is the premium paid for the option, while the trend strategy can lose significantly more.
The straddle strategy goes one step further, though, and would also buy a put option. So not only does it have a fixed loss on the call if price reverses course, but it can also profit if it reverses sufficiently.
One way to model the straddle strategies, then, is as insurance policies with varying deductibles. There is an up-front premium that is paid, and the strategy does not pay out until the deductible – the distance that the option is struck in the money – is met.
When the deductible is high – that is, when the trend is very strong in either direction – the premium for the insurance policy tends to be low. On the other hand, a strategy that purchases at the money straddles would be equivalent to buying insurance with no deductible.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
On average, the 3-month straddle strategy pays annual premiums of about 14% for the benefit of only having to wait for a price reversal of 6% before protection kicks in. Toward the other end of the spectrum, the 12-month strategy has an annual average premium of under 6% with a 16% deductible.
We can also visualize how often each straddle strategy pays higher premiums by looking at the deltas of the straddles over time. When these values deviate significantly from +1 or -1, then the straddle is lowering its insurance deductible in favor of paying more in premium. When the delta is nearly +1 or -1, then the straddle is buying higher deductible insurance that will take a larger whipsaw to payout.
The charts below show the delta over time in the straddle strategies vs. the trend allocation for 3-, 6-, and 12-month lookback windows.
There is significant overlap, especially as trends get longer. The differences in the deltas in the 3-month straddle model highlight its tradeoff between lower deductibles and higher insurance premiums. However, this leads it to be more adaptive at capitalizing on equity moves in the opposite direction that lead to losses in the binary trend-following model.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
The chart below shows the annualized performance of the straddle strategies when they underperform trend following (premium) and the annualized performance of the straddle strategies when they outperform trend following (payout). As the lookback window increases, both of these figures generally decline in absolute value.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Even though we saw previously that the 3-month straddle strategy had the highest annual premium, its overall payout when it outperforms trend following is substantial. The longer lookbacks do not provide as much of a buffer due to their higher deductible levels, despite their lower premiums.
When the naïve trend strategy is right, it captures the full price change with no up-front premium. When it is wrong, however, it bears the full brunt of losses.
With the straddle strategy, the cost is paid up front for the benefit to not only protect against price reversals, but even potentially profit from them.
As a brief aside, a simpler options strategy with similar characteristics would be to buy only either a call option or put option depending on the trend signal. This strategy would not profit from a reversion of the trend, but it would cap losses. Comparing it to the straddle strategies highlights the cost and benefit of the added protection.
Source: Tiingo and DiscountOptionData.com. Calculations by Newfound Research.
Buying only puts or calls generally helped both of the strategies shown in the chart. This came in reduced premiums over a time period when trimming premiums whenever possible paid off, especially for the 12-month lookback strategy. However, there are some notable instances where the extra protection of the straddle was very helpful, e.g. August 2011 and late 2014 for the 3-month lookback strategy and March 2020 for both.
Despite the similarities between the options and trend strategies, this difference in when the payment is made – either up-front in the straddle strategy or after-the fact in whipsaw in the trend following strategy – ends up being the key differentiator.
The relative performance of the strategies shows that investors mostly benefitted over the past 15 years by bearing this risk of whipsaw and large, sudden price-reversals. However, as the final moths of data indicates, option strategies can provide benefits that option-like strategies cannot.
Ultimately, the choice between risks is up to investor preferences, and a diversified approach that pairs strategies different convex strategies such as trend following and options is likely most appropriate.
Conclusion
The convex payoff profile of trend following strategies naturally lends itself to comparative analysis with option strategies, which also have a convex payoff profile. In fact, we would argue – as we have many times in the past – that trend following strategies coarsely replicate the delta profile of option straddles.
In this commentary, we sought to make that connection more explicit by building option straddle strategies that correspond to a naïve trend following strategies of varying lookback lengths.
While the trend following approach has no explicit up-front cost, it risks bearing the full brunt of sudden and large price reversals. With the straddle-based approach, an investor explicitly pays an up-front premium to insure against these risks.
When evaluated through the lens of an insurance policy, the straddle strategy dynamically adjusts its associated premium and deductible over time. When trends are strong, for example, premiums paid tend to be lower, but the cost is a higher deductible. Conversely, when trends are flat, the premium is much higher, but the deductible is much lower.
We found that over the 2005-2020 test period, the cost of the option premiums exceeded the cost of whipsaw in the trend strategies in almost all cases. That is, until March 2020, when a significant and sudden market reversal allowed the straddle strategies to make up for 15 years of relative losses in a single month.
As we like to say: risk cannot be destroyed, only transformed. In this case, the trend strategy was willing to bear the risk of large intra-month price reversals to avoid paying any up-front premium. This was a benefit to the trend investor for 15 years. And then it wasn’t.
By constructing straddle strategies, we believe that we can better measure the trade-offs of trend following versus the explicit cost of insurance. While trend following may approximate the profile of a straddle, it sacrifices some of the intra-month insurance qualities to avoid an up-front premium. Whether this risk trade-off is ultimately worth it depends upon the risks an investor is willing to bear.
Tail Hedging
By Corey Hoffstein
On June 8, 2020
In Risk Management, Weekly Commentary
This post is available as a PDF download here.
Summary
“To hedge, or not to hedge, that is the question.”
Nothing brings tail risk management back to the forefront of investors’ minds like a market crisis. Despite the broad interest, the jury is still out as to the effectiveness of these approaches.
Yet if an investor is subject to a knock-out barrier – i.e. a point of loss that creates permanent impairment – then insuring against that loss is critical. This is often the case for retirees or university endowments, as withdrawal rates increase non-linearly with portfolio drawdowns. In this case, the question is not whether to hedge, but rather about the most cost-effective means of hedging.
Some academics and practitioners have argued that put-based portfolio protection is prohibitively expensive, failing to keep pace with a simple beta-equivalent equity portfolio. They also highlight that naïve put strategies – such as holding 10% out-of-the-money (“OTM”) puts to expiration – are inherently path dependent.
Yet empirical evidence may fail us entirely in this debate. After all, if the true probability and magnitude of tail events is unknowable (as markets have fat tails whose actual distribution is hidden from us), then prior empirical evidence may not adequately inform us about latent risks. After all, by their nature, tail events are rare. Therefore, drawing any informed conclusions from tail event data will be shrouded in a large degree of statistical uncertainty.
Let us start by saying that the goal of this research note is not to prove whether tail risk hedging is or is not cost effective. Rather, our goal is to demonstrate some of the complexities and nuances that make the conversation difficult.
And this piece will only scratch the surface. We’ll be focusing specifically on buying put options on the S&P 500. We will not discuss pro-active monetization strategies (i.e. conversion of our hedge into cash), trade conversion (e.g. converting puts into put spreads), basis risk trades (e.g. buying calls on U.S. Treasuries instead of puts on equities), or exchanging non-linear for linear hedges (e.g. puts for short equity futures).
Given that we are ignoring all these components – all of which are important considerations in any actively managed tail hedging strategy – it does call into question the completeness of this note. While we hope to tackle these topics in later pieces, we highlight their absence specifically to point out that tail risk hedging is a highly nuanced topic.
So, what do we hope to achieve?
We aim to demonstrate that the path dependency risk of tail hedging strategies may be overstated and that the true value of deep tail hedges emerges not from the actual insurance of loss but the rapid repricing of risk.
A Quantitative Aside
Options data is notoriously dirty, and therefore the results of back testing options strategies can be highly suspect. In this note, rather than price our returns based upon historical options data (which may be stale or have prohibitively wide bid/ask spreads), we fit a volatility surface to that data and price our options based upon that surface.
Specifically, each trading day we fit a quadratic curve to log-moneyness and implied total variance for each quoted maturity. This not only allows us to reduce the impact of dirty data, but it allows us to price any strike and maturity combination.
While we limit ourselves only to using listed maturity dates, we do stray from listed strikes. For example, in quoting a 10% out-of-the-money put, rather than using the listed put option that would be closest to that strike, we just assume the option for that strike exists.
This approach means, definitively, that results herein were not actually achievable by any investor. However, since we will be making comparisons across different option strategy implementations, we do not believe this is a meaningful impact to our results.
To reduce the impacts of rebalance timing luck, all strategies are implemented with overlapping portfolios. For example, for a strategy that buys 3-month put options and holds them to maturity would be implemented with three overlapping sub-portfolios that each roll on discrete 3-month periods but do so on different months.
Finally, the indices depicted herein are designed such that they match notional coverage of the S&P 500 (e.g. 1 put per share of S&P 500) when implemented as a 100% notional overlay and rebalanced monthly upon option expiration.
The Path Dependency of Holding to Expiration
One of the arguments often made against tail hedging is the large degree of path dependency the strategy can exhibit. For example, consider an investor who buys 10% OTM put options each quarter. If the market falls less than 10% each quarter, the options will provide no protection. Therefore, when holding to expiration, we need drawdowns to precisely coincide with our holding period to achieve maximum protection.
But is there something inherently special about holding to expiration? For popular indices and ETFs, there are liquid options markets available, allowing us to buy and sell at any time. What occurs if we roll our options a month or two before expiration?
Below we plot the results of doing precisely this. In the first strategy, we purchase 10% OTM puts and hold them to expiration. In the second strategy, we purchase the same 10% OTM puts, but roll them a month before expiration.
Source: DiscountOptionsData.com. Calculations by Newfound Research. Returns are hypothetical and backtested. Returns are gross of all fees including, but not limited to, management fees, transaction fees, and taxes. Returns assume the reinvestment of all distributions.
We see nearly identical long-term returns and, more importantly, the returns during the 2008 crisis and the recent March turmoil are indistinguishable. And we outright skipped holding each option for 1/3rd of its life!
Our results seem to suggest that the strategies are less path dependent than originally argued.
An alternative explanation, however, may be that during these crises our options end up being so deep in the money that it does not matter whether we roll them early or not. One way to evaluate this hypothesis is to look at the rolling delta profile – how sensitive our option strategy is to changes in the underlying index – over time.
Source: DiscountOptionsData.com. Calculations by Newfound Research.
We can see is that during calm market environments, the two strategies exhibit nearly identical delta profiles. However, in 2008, August 2011, Q4 2018, and March 2020 the delta of the strategy that holds to expiration is substantially more negative. For example, in October 2008, the strategy that holds to expiration had a delta of -2.75 whereas the strategy that rolls had a delta of -1.77. This means that for each 1% the S&P 500 declines, we estimate that the strategies would gain +2.75% and +1.77% respectively (ignoring other sensitivities for the moment).
Yet, despite this added sensitivity, the strategy that holds to expiration does not seem to offer meaningfully improved returns during these crisis periods.
Source: DiscountOptionsData.com. Calculations by Newfound Research.
Part of the answer to this conundrum is theta, which measures the rate at which options lose their value over time. We can see that during these crises the theta of the strategy that holds to expiration spikes significantly, as with little time left the value of the option will be rapidly pulled towards the final payoff and variables like volatility will no longer have any impact.
What is clear is that delta is only part of the equation. In fact, for tail hedges, it may not even be the most important piece.
Convexity in Volatility
To provide a bit more insight, we can try to contrive an example whereby we know that ending in the money should not have been a primary driver of returns.
Specifically, we will construct two strategies that buy 3-month put options and roll each month. In the first strategy, the put option will just be 10% OTM and in the second strategy it will be 30% OTM. As we expect the option in the second strategy to be significantly cheaper, we set an explicit budget of 60 basis points of our capital each month.1
Below we plot the results of these strategies.
Source: DiscountOptionsData.com. Calculations by Newfound Research. Returns are hypothetical and backtested. Returns are gross of all fees including, but not limited to, management fees, transaction fees, and taxes. Returns assume the reinvestment of all distributions.
In March 2020, the 10% OTM put strategy returned 13.4% in and the 30% OTM put strategy returned 39.3%. From prior trough (February 19th) to peak (March 23rd), the strategies returned 18.4% and 46.5% respectively.
This is a stark difference considering that the 10% OTM put was definitively in-the-money as of March 20th (when it was rolled) and the 30% OTM strategy was on the cusp. Consider the actual trades placed:
It is also worth noting that since we are spending a fixed budget, we can buy 8.38 contracts of the 30% OTM put for every contract of the 10% OTM put.
So why did the 30% OTM put appreciate so much more? Below we plot the position scaled sensitivities (i.e. dividing by the cost per contract) to changes in the S&P 500 (“delta”), changes in implied volatility (“vega”), and their respective derivatives (“gamma” and “volga”).
Source: DiscountOptionsData.com. Calculations by Newfound Research.
We can see that as of February 21st, the sensitivities are nearly identical for delta, gamma, and vega. But note the difference in volga.
What is volga? Volga tells us how much the option’s sensitivity to implied volatility (“vega”) changes as implied volatility itself changes. If we think of vega as a kind of velocity, volga would be acceleration.
A positive vega tells us that the option will gain value as implied volatility goes up. A positive volga tells us that the option will gain value at an accelerating rate as implied volatility goes up. Ultimately, this means the price of the option is convex with respect to changes in implied volatility.
So as implied volatilities climbed during the March turmoil, not only did the option gain value due to its positive vega, but it did so at an accelerating rate thanks to its positive volga.
Arguably this is one of the key features we are buying when we buy a deep OTM put.3 We do not need the option to end in the money to provide a meaningful tail hedge; rather, the value is derived from large moves in implied volatility as the market re-prices risk.
Indeed, if we perform the same analysis for September and October 2008, we see an almost identical situation.
Source: DiscountOptionsData.com. Calculations by Newfound Research.
Conclusion
In this research note, we aimed to address one of the critiques against tail risk hedging: namely that it is highly path dependent. For naively implemented strategies that hold options to expiration, this may be the case. However, we have demonstrated in this piece that holding to expiration is not a necessary condition of a tail hedging program.
In a contrived example, we explore the return profile of a strategy that rolls 10% OTM put options and a strategy that rolls 30% OTM put options. We find that the latter offered significantly better returns in March 2020 despite the fact the options sold were barely in the money.
We argue that the primary driver of value in the 30% OTM put is the price convexity it offers with respect to implied volatility. While the 10% OTM put has positive sensitivity to changes in implied volatility, that sensitivity does not change meaningfully as implied volatility changes. On the other hand, the 30% OTM put has both positive vega and volga, which means that vega will increase with implied volatility. This convexity makes the option particularly sensitive to large re-pricings of market risk.
It is common to think of put options as insurance contracts. However, with insurance contracts we receive a payout based upon damage assessed. The key difference with options is that we have the ability to monetize them based upon potential damage perceived. When we remove the expectation of holding options into expiration (and therefore only monetizing damage assessed), we potentially unlock the ability to profit from more than just changes in underlying price.