The Research Library of Newfound Research

Author: Corey Hoffstein Page 7 of 18

Corey is co-founder and Chief Investment Officer of Newfound Research.

Corey holds a Master of Science in Computational Finance from Carnegie Mellon University and a Bachelor of Science in Computer Science, cum laude, from Cornell University.

You can connect with Corey on LinkedIn or Twitter.

Value and the Credit Spread

This post is available as a PDF download here.

Summary­

  • We continue our exploration of quantitative signals in fixed income.
  • We use a measure of credit curve steepness as a valuation signal for timing exposure between corporate bonds and U.S. Treasuries.
  • The value signal generates a 0.84% annualized return from 1950 to 2019 but is highly regime dependent with meaningful drawdowns.
  • Introducing a naïve momentum strategy significantly improves the realized Sharpe ratio and drawdown profile, but does not reduce the regime-based nature of the returns.
  • With a combined return of just 1.0% annualized, this strategy may not prove effective after appropriate discounting for hindsight bias, costs, and manager fees. The signal itself, however, may be useful in other contexts.

In the last several weeks, we have been exploring the application of quantitative signals to fixed income.

Recent cross-sectional studies also build off of further research we’ve done in the past on applying trend, value, carry, and explicit measures of the bond risk premium as duration timing mechanisms (see Duration Timing with Style Premia; Timing Bonds with Value, Momentum, and Carry; and A Carry-Trend-Hedge Approach to Duration Timing).

Broadly, our studies have found:

  • Value (measured as deviation from real yield), momentum (prior 12-month returns), and carry (yield-to-worst) were all profitable factors in cross-section municipal bond sector long/short portfolios.
  • Value (measured as deviation from real yield), trend (measured as prior return), and carry (measured as term spread + roll yield) have historically been effective timing signals for U.S. duration exposure.
  • Prior short-term equity returns proved to be an effective signal for near-term returns in U.S. Treasuries (related to the “flight-to-safety premium”).
  • Short-term trend proved effective for high yield bond timing, but the results were vastly determined by performance in 2000-2003 and 2008-2009. While the strategy appeared to still be able to harvest relative carry between high-yield bonds and core fixed income in other environments, a significant proportion of returns came from avoiding large drawdowns in high yield.
  • Short-term cross-section momentum (prior total returns), value (z-score of loss-adjusted yield-to-worst), carry (loss-adjusted yield-to-worst), and 3-year reversals all appeared to offer robust signals for relative selection in fixed income sectors. The time period covered in the study, however, was limited and mostly within a low-inflation regime.
  • Application of momentum, value, carry, and reversal as timing signals proved largely ineffective for generating excess returns.

In this week’s commentary, we want to further contribute to research by introducing a value timing signal for credit.

Finding Value in Credit

Identifying a value signal requires some measure or proxy of an asset’s “fair” value. What can make identifying value in credit so difficult is that there are a number of moving pieces.

Conceptually, credit spreads should be proportional to default rates, recovery rates, and aggregate risk appetite, making determining whether spreads are cheap or expensive rather complicated.  Prior literature typically tackles the problem with one of three major categories of models:

  • Econometric: “Fair value” of credit spreads is modeled through a regression that typically explicitly accounts for default and recovery rates. Inputs are often related to economic and market variables, such as equity market returns, 10-year minus 2-year spreads, corporate leverage, and corporate profitability.  Bottom-up analysis may use metrics such as credit quality, maturity, supply, and liquidity.
  • Merton Model: Based upon the idea the bond holders have sold a put on a company’s asset value. Therefore, options pricing models can be used to calculate a credit spread.  Inputs include the total asset value, asset volatility, and leverage of the firm under analysis.
  • Spread Signal: A simple statistical model derived from credit spread themselves. For example, a rolling z-score of option-adjusted spreads or deviations from real yield.  Other models (e.g. Haghani and Dewey (2016)) have used spread plus real yield versus a long-run constant (e.g. “150 basis points”).

The first method requires a significant amount of economic modeling.  The second approach requires a significant amount of extrapolation from market data.  The third method, while computationally (and intellectually) less intensive, requires a meaningful historical sample that realistically needs to cover at least one full market cycle.

While attractive for its simplicity, there are a number of factors that complicate the third approach.

First, if spreads are measured against U.S. Treasuries, the metric may be polluted by information related to Treasuries due to their idiosyncratic behavior (e.g. scarcity effects and flight-to-safety premiums).  Structural shifts in default rates, recovery rates, and risk appetites may also cause a problem, as spreads may appear unduly thin or wide compared to past regimes.

In light of this, in this piece we will explore a similarly simple-to-calculate spread signal, but one that hopefully addresses some of these short-comings.

Baa vs. Aaa Yields

In order to adjust for these problems, we propose looking at the steepness of the credit curve itself by comparing prime / high-grade yield versus lower-medium grade yields.  For example, we could compare Moody’s Season Aaa Corporate Bond Yield and Moody’s Season Baa Corporate Bond Yield.  In fact, we will use these yields for the remainder of this study.

We may be initially inclined to measure the steepness of the credit curve by taking the difference in yield spreads, which we plot below.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

We can find a stronger mean-reverting signal, however, if we calculate the log-difference in yields.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

We believe this transformation is appropriate for two reasons.  First, the log transformation helps control for the highly heteroskedastic and skewed nature of credit spreads.

Second, it helps capture both the steepness andthe level of the credit curve simultaneously.  For example, a 50-basis-point premium when Aaa yield is 1,000 basis points is very different than when Aaa yield is 100 basis points.  In the former case, investors may not feel any pressure to bear excess risk to achieve their return objectives, and therefore a 50-basis-point spread may be quite thin.  In the latter case, 50 basis points may represent a significant step-up in relative return level in an environment where investors have either low default expectations, high recovery expectations, high risk appetite, or some combination thereof.

Another way of interpreting our signal is that it informs us about the relative decisions investors must make about their expected dispersion in terminal wealth.

Constructing the Value Strategy

With our signal in hand, we can now attempt to time credit exposure.  When our measure signals that the credit curve is historically steep, we will take credit risk.  When our signal indicates that the curve is historically flat we will avoid it.

Specifically, we will construct a dollar-neutral long/short portfolio using the Dow Jones Corporate Bond Index (“DJCORP”) and a constant maturity 5-year U.S. Treasury index (“FV”).   We will calculate a rolling z-score of our steepness measure and go long DJCORP and short FV when the z-score is positive and place the opposite trade when the z-score is negative.

In line with prior studies, we will apply an ensemble approach.  Portfolios are reformed monthly using formation ranging from 3-to-6 years with holding periods ranging from 1-to-6 months.  Portfolio weights for the resulting strategy are plotted below.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research.

We should address the fact that while both corporate bond yield and index data is available back to the 1930s, we have truncated our study to ignore dates prior to 12/1949 to normalize for a post-war period.  It should be further acknowledged that the Dow Jones Corporate Bond index used in this study did not technically exist until 2002.  Prior to that date, the index return tracks a Dow Jones Bond Aggregate, which was based upon four sub-indices: high-grade rails, second-grade rails, public utilities, and industries.  This average existed from 1915 to 1976, when it was replaced with a new average at that point when the number of railway bonds was no longer sufficient to maintain the average.

Below we plot the returns of our long/short strategy.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research. Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

The strategy has an annualized return of 0.84% with a volatility of 3.89%, generating a Sharpe ratio of 0.22.  Of course, long-term return statistics belie investor and manager experience, with this strategy exhibiting at least two periods of decade-plus-long drawdowns.  In fact, the strategy really has just four major return regimes: 1950 to 1970 (-0.24% annualized), 1970 to 1987 (2.59% annualized), 1987 to 2002 (-0.33%), and 2002 to 2019 (1.49% annualized).

Try the strategy out in the wrong environment and we might be in for a lot of pain.

Momentum to the Rescue?

It is no secret that value and momentum go together like peanut butter and jelly. Instead of tweaking our strategy to death in order to improve it, we may just find opportunity in combining it with a negatively correlated signal.

Using an ensemble model, we construct a dollar-neutral long/short momentum strategy that compares prior total returns of DJCORP and FV.  Rebalanced monthly, the portfolios use formation periods ranging from 9-to-15 months and holding periods ranging from 1-to-6 months.

Below we plot the growth of $1 in our value strategy, our momentum strategy, and a 50/50 combination of the two strategies that is rebalanced monthly.

Source: Federal Reserve of St. Louis and Global Financial Data.  Calculations by Newfound Research. Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

The first thing we note is – even without calculating any statistics – the meaningful negative correlation we see in the equity curves of the value and momentum strategies.  This should give us confidence that there is the potential for significant improvement through diversification.

The momentum strategy returns 1.11% annualized with a volatility of 3.92%, generating a Sharpe ratio of 0.29.  The 50/50 combination strategy, however, returns 1.03% annualized with a volatility of just 2.16% annualized, resulting in a Sharpe ratio of 0.48.

While we still see significant regime-driven behavior, the negative regimes now come at a far lower cost.

Conclusion

In this study we introduce a simple value strategy based upon the steepness of the credit curve.  Specifically, we calculated a rolling z-score on the log-difference between Moody’s Seasoned Baa and Aaa yields.  We interpreted a positive z-score as a historically steep credit curve and therefore likely one that would revert.  Similarly, when z-scores were negative, we interpreted the signal as a flat credit curve, and therefore a period during which taking credit risk is not well compensated.

Employing an ensemble approach, we generated a long/short strategy that would buy the Dow Jones Corporate Bond Index and short 5-year U.S. Treasuries when credit appeared cheap and place the opposite trade when credit appeared expensive.  We found that this strategy returned 0.84% annualized with a volatility of 3.89% from 1950 to 2019.

Unfortunately, our value signal generated significantly regime-dependent behavior with decade-long drawdowns.  This not only causes us to question the statistical validity of the signal, but also the practicality of implementing it.

Fortunately, a naively constructed momentum signal provides ample diversification.  While a combination strategy is still highly regime-driven, the drawdowns are significantly reduced.  Not only do returns meaningfully improve compared to the stand-alone value signal, but the Sharpe ratio more-than-doubles.

Unfortunately, our study leveraged a long/short construction methodology.  While this isolates the impact of active returns, long-only investors must cut return expectations of the strategy in half, as a tactical timing model can only half-implement this trade without leverage.  A long-only switching strategy, then, would only be expected to generate approximately 0.5% annualized excess return above a 50% Dow Jones Corporate Bond Index / 50% 5-Year U.S. Treasury index portfolio.

And that’s before adjustments for hindsight bias, trading costs, and manager fees.

Nevertheless, more precise implementation may lead to better results.  For example, our indices neither perfectly matched the credit spreads we evaluated, nor did they match each other’s durations.  Furthermore, while this particular implementation may not survive costs, this signal may still provide meaningful information for other credit-based strategies.

Quantitative Styles and Multi-Sector Bonds

This post is available as a PDF download here.

Summary­

  • In this commentary we explore the application of several quantitative signals to a broad set of fixed income exposures.
  • Specifically, we explore value, momentum, carry, long-term reversals, and volatility signals.
  • We find that value, 3-month momentum, carry, and 3-year reversals all create attractive quantile profiles, potentially providing clues for how investors might consider pursuing higher returns or lower risk.
  • This study is by no means comprehensive and only intended to invite further research and conversation around the application of quantitative styles across fixed income exposures.

In Navigating Municipal Bonds with Factors, we employed momentum, value, carry, and low-volatility signals to generate a sector-based approach to navigating municipal bonds.

In this article, we will introduce an initial data dive into applying quantitative signals to a broader set of fixed income exposures.  Specifically, we will incorporate 17 different fixed income sectors, spanning duration, credit, and geographic exposure.

  • U.S. Treasuries: Near (3-Month), short (1-3 Year), mid (3-5 Year) intermediate (7-10 Year), and long (20+ Year).
  • Investment-Grade Corporates: Short-term, intermediate-term, and Floating Rate corporate bonds.
  • High Yield: Short- and intermediate-term high yield.
  • International Government Bonds: Currency hedged and un-hedged government bonds.
  • Emerging Market: Local and US dollar denominated.
  • TIPs: Short- and intermediate-term TIPs.
  • Mortgage-Backed: Investment grade mortgage-backed bonds.

In this study, each exposure is represented by a corresponding ETF.  We extend our research prior to ETF launch by employing underlying index data the ETF seeks to track.

The quantitative styles we will explore are:

  • Momentum: Buy recent winners and sell recent losers.
  • Value: Buy cheap and sell expensive.
  • Carry: Buy high carry and sell low carry.
  • Reversal: Buy long-term losers and sell long-term winners.
  • Volatility: Buy high volatility and sell low volatility.1

The details of each style are explained in greater depth in each section below.

Note that the analysis herein is by no means meant to be prescriptive in any manner, nor is it a comprehensive review.  Rather, it is meant as a launching point for further commentaries we expect to write.

At the risk of spoiling the conclusion, below we plot the annualized returns and volatility profiles of dollar-neutral long-short portfolios.2  We can see that short-term Momentum, Value, Carry, and Volatility signals generate positive excess returns over the testing period.

Curiously, longer-term Momentum does not seem to be a profitable strategy, despite evidence of this approach being rather successful for many other asset classes.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

However, these results are not achievable by most investors who may be constrained to a long-only implementation.  Even when interpreted as over- and under-weight signals, the allocations in the underlying long/short portfolios differ so greatly from benchmark exposures, they would be nearly impossible to implement.

For a long-only investor, then, what is more relevant is how these signals forecast performance of different rank orderings of portfolios.  For example, how does a portfolio of the best-ranking 3-month momentum exposures compare to a portfolio of the worst-ranking?

In the remainder of this commentary, we explore the return and risk profiles of quintile portfolios formed on each signal.  To construct these portfolios, we rank order our exposures based on the given quantitative signal and equally-weight the exposures falling within each quintile.

Momentum

We generate momentum signals by computing 12-, 6- and 3- month prior total returns to reflect slow, intermediate, and fast momentum signals.  Low-ranking exposures are those with the lowest prior total returns, while high ranking exposures have the highest total returns.

The portfolios assume a 1-month holding period for momentum signals.  To avoid timing luck, four sub-indexes are used, each rebalancing on a different week of the month.

Annualized return and volatility numbers for the quintiles are plotted below.

A few interesting data-points stand out:

  • For 12-month prior return, the lowest quintile actually had the highest total return.However, it has a dramatically lower Sharpe ratio than the highest quintile, which only slightly underperforms it.
  • Total returns among the highest quintile increase by 150 basis points (“bps”) from 12-month to 3-month signals, and 3-month rankings create a more consistent profile of increasing total return and Sharpe ratio. This may imply that short-term signals are more effective for fixed income.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

Carry

Carry is the expected excess return of an asset assuming price does not change.  For our fixed income universe, we proxy carry using yield-to-worst minus the risk-free rate.  For non-Treasury holdings, we adjust this figure for expected defaults and recovery.

For reasonably efficient markets, we would expect higher carry to imply higher return, but not necessarily higher risk-adjusted returns.  In other words, we earn higher carry as a reward for bearing more risk.

Therefore, we also calculate an alternate measure of carry: carry-to-risk.  Carry-to-risk is calculated by taking our carry measure and dividing it by recent realized volatility levels.  One way of interpreting this figure is as forecast of Sharpe ratio.  Our expectation is that this signal may be able to identify periods when carry is episodically cheap or rich relative to prevailing market risk.

The portfolios assume a 12-month holding period for carry signals.  To avoid timing luck, 52 sub-indexes are used, each rebalancing on a different week of the year.

We see:

  • Higher carry implies a higher return as well as a higher volatility. As expected, no free lunch here.
  • Carry-to-risk does not seem to provide a meaningful signal. In fact, low carry-to-risk outperforms high carry-to-risk by 100bps annualized.
  • Volatility meaningfully declines for carry-to-risk quintiles, potentially indicating that this integrated carry/volatility signal is being too heavily driven by volatility.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

Value

In past commentaries, we have used real yield as our value proxy in fixed income.  In this commentary, we deviate from that methodology slightly and use a time-series z-score of carry as our value of measure. Historically high carry levels are considered to be cheap while historically low carry levels are considered to be expensive.

The portfolios assume a 12-month holding period for value signals.  To avoid timing luck, 52 sub-indexes are used, each rebalancing on a different week of the year.

We see not only a significant increase in total return in buying cheap versus expensive holdings, but also an increase in risk-adjusted returns.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions. 

Reversal

Reversal signals are the opposite of momentum: we expect past losers to outperform and past winners to underperform.  Empirically, reversals tend to occur over very short time horizons (e.g. 1 month) and longer-term time horizons (e.g. 3- to 5-years).  In many ways, long-term reversals can be thought of as a naive proxy for value, though there may be other behavioral and structural reasons for the historical efficacy of reversal signals.

We must be careful implementing reversal signals, however, as exposures in our universe have varying return dynamics (e.g. expected return and volatility levels).

To illustrate this problem, consider the simple two-asset example of equities and cash.  A 3-year reversal signal would sell the asset that has had the best performance over the prior 3-years and buy the asset that has performed the worst.  The problem is that we expect stocks to outperform cash due to the equity risk premium. Naively ranking on prior returns alone would have us out of equities during most bull markets.

Therefore, we must be careful in ranking assets with meaningfully different return dynamics.

(Why, then, can we do it for momentum?  In a sense, momentum is explicitly trying to exploit the relative time-series properties over a short-term horizon.  Furthermore, in a universe that contains low-risk, low-return assets, cross-sectional momentum can be thought of as an integrated process between time-series momentum and cross-sectional momentum, as the low-risk asset will bubble to the top when absolute returns are negative.)

To account for this, we use a time-series z-score of prior returns to create a reversal signal.  For example, at each point in time we calculate the current 3-year return and z-score it against all prior rolling 3-year periods.

Note that in this construction, high z-scores will reflect higher-than-normal 3-year numbers and low z-scores will reflect lower-than-normal 3-year returns. Therefore, we negate the z-score to generate our signal such that low-ranked exposures reflect those we want to sell and high-ranked exposures reflect those we want to buy.

The portfolios assume a 12-month holding period for value signals.  To avoid timing luck, 52 sub-indexes are used, each rebalancing on a different week of the year.

Plotting the results below for 1-, 3-, and 5-year reversal signals, we see that 3- and 5-year signals see a meaningful increase in both total return and Sharpe ratio between the lowest quintile.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

Volatility

Volatility signals are trivial to generate: we simply sort assets based on prior realized volatility.  Unfortunately, exploiting the low-volatility anomaly is difficult without leverage, as the empirically higher risk-adjusted return exhibited by low-volatility assets typically coincides with lower total returns.

For example, in the tests below the low quintile is mostly comprised of short-term Treasuries and floating rate corporates.  The top quintile is allocated across local currency emerging market debt, long-dated Treasuries, high yield bonds, and unhedged international government bonds.

As a side note, for the same reason we z-scored reversal signals, we also hypothesized that z-scoring may work on volatility.  Beyond these two sentences, the results were nothing worth writing about.

Nevertheless, we can still attempt to confirm the existence of the low-volatility anomaly in our investable universe by ranking assets on their past volatility.

The portfolios assume a 1-month holding period for momentum signals.  To avoid timing luck, four sub-indexes are used, each rebalancing on a different week of the month.

Indeed, in plotting results we see that the lowest volatility quintiles have significantly higher realized Sharpe ratios.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

Of the results plotted above, our eyes might be drawn to the results in the short-term volatility measure. It would appear that the top quintile has both a lower total return and much higher volatility than the 3rd and 4th quintiles.  This might suggest that we could improve our portfolios risk-adjusted returns without sacrificing total return by avoiding those top-ranked assets.

Unfortunately, this is not so clear cut.  Unlike the other signals where the portfolios had meaningful turnover, these quintiles are largely stable.  This means that the results are driven more by the composition of the portfolios than the underlying signals.  For example, the 3rd and 4th quintiles combine both Treasuries and credit exposure, which allows the portfolio to realize lower volatility due to correlation.  The highest volatility quintile, on the other hand, holds both local currency emerging market debt and un-hedged international government bonds, introducing (potentially uncompensated) currency risk into the portfolio.

Thus, the takeaway may be more strategic than tactical: diversification is good and currency exposure is going to increase your volatility.

Oh – and allocating to zero-to-negatively yielding foreign bonds isn’t going to do much for your return unless currency changes bail you out.

Conclusion

In this study, we explored the application of value, momentum, carry, reversal, and volatility signals across fixed income exposures.  We found that value, 3-month momentum, carry, and 3-year reversal signals may all provide meaningful information about forward expected returns and risk.

Our confidence in this analysis, however, is potentially crippled by several points:

  • The time horizon covered is, at best, two decades, and several economic variables are constant throughout it.
  • The inflation regime over the time period was largely uniform.
  • A significant proportion of the period covered had near-zero short-term Treasury yields and negative yields in foreign government debt.
  • Reversal signals require a significant amount of formation data. For example, the 3-year reversal signal requires 6 years (i.e. 3-years of rolling 3-year returns) of data before a signal can be generated. This represents nearly 1/3rd of the data set.
  • The dispersion in return dynamics (e.g. volatility and correlation) of the underlying assets can lead to the emergence of unintended artifacts in the data that may speak more to portfolio composition than the value-add from the quantitative signal.
  • We did not test whether certain exposures or certain time periods had an outsized impact upon results.
  • We did not thoroughly test stability regions for different signals.
  • We did not test the impact of our holding period assumptions.
  • Holdings within quantile portfolios were assumed to be equally weighted.

Some of these points can be addressed simply.  Stability concerns, for example, can be addressed by testing the impact of varying signal parameterization.

Others are a bit trickier and require more creative thinking or more computational horsepower.

Testing for the outsized impact of a given exposure or a given time period, for example, can be done through sub-sampling and cross-validation techniques.  We can think of this as the application of randomness to efficiently cover our search space.

For example, below we re-create our 3-month momentum quintiles, but do so by randomly selecting only 10 of the exposures and 75% of the return period to test.   We repeat this resampling 10,000 times for each quintile and plot the distribution of annualized returns below.

Even without performing an official difference-in-means test, the separation between the low and high quintile annualized return distributions provides a clue that the performance difference between these two is more likely to be a pervasive effect rather than due to an outlier holding or outlier time period.

We can make this test more explicit by using this subset resampling technique to bootstrap a distribution of annualized returns for a top-minus-bottom quintile long/short portfolio.  Specifically, we randomly select a subset of assets and generate our 3-month momentum signals.  We construct a dollar-neutral long/short portfolio by going long assets falling in the top quintile and short assets falling in the bottom quintile.  We then select a random sub-period and calculate the annualized return.

Only 207 of the 10,000 samples fall below 0%, indicating a high statistical likelihood that the outperformance of recent winners over recent losers is not an effect dominated by a specific subset of assets or time-periods.

While this commentary provides a first step towards analyzing quantitative style signals across fixed income exposures, more tests need to be run to develop greater confidence in their efficacy.

Source: Bloomberg; Tiingo.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all management fees, transaction fees, and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

 


 

Tactical Credit

This post is available as a PDF download here.

Summary­

  • In this commentary we explore tactical credit strategies that switch between high yield bonds and core fixed income exposures.
  • We find that short-term momentum signals generate statistically significant annualized excess returns.
  • We use a cross-section of statistically significant strategy parameterizations to generate an ensemble strategy.Consistent with past research, we find that this ensemble approach helps reduce idiosyncratic specification risk and dramatically increases the strategy’s information ratio above the median underlying strategy information ratio.
  • To gain a better understanding of the strategy, we attempt to determine the source of strategy returns. We find that a significant proportion of returns are generated as price returns occurring during periods when credit spreads are above their median value and are expanding.
  • Excluding the 2000-2003 and 2008-2009 sub-periods reduces gross-of-cost strategy returns from 2.9% to 1.5%, bringing into question how effective post-of-cost implementation can be if we do not necessarily expect another crisis period to unfold.

There is a certain class of strategies we get asked about quite frequently but have never written much on: tactical credit.

The signals driving these strategies can vary significantly (including momentum, valuation, carry, macro-economic, et cetera) and implementation can range from individual bonds to broad index exposure to credit default swaps.  The simplest approach we see, however, are high yield switching strategies.  The strategies typically allocate between high yield corporate bonds and core fixed income (or short-to-medium-term U.S. Treasuries) predominately based upon some sort of momentum-driven signal.

It is easy to see why this seemingly naïve approach has been attractive.  Implementing a simple rotation between –high-yield corporates– and –core U.S. fixed income– with a 3-month lookback with 1-month hold creates a fairly attractive looking –tactical credit– strategy.

Source: Tiingo.  Calculations by Newfound Research.   Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  HY Corporates represents the Vanguard High-Yield Corporate Fund (VWEHX).  Core Bonds is represented by the Vanguard Total. Bond Market Index Fund (VBMFX).  Returns assume the reinvestment of all distributions.

Visualizing the ratio of the equity curves over time, we see a return profile that is reminiscent of past writings on tactical and trend equity strategies. The tactical credit strategy tends to outperform core bonds during most periods, with the exception of periods of economic stress (e.g. 2000-2002 or 2008).  On the other hand, the tactical credit strategy tends to underperform high yield corporates in most environments, but has historically added significant value in those same periods of economic stress.

Source: Tiingo.  Calculations by Newfound Research.   Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  HY Corporates represents the Vanguard High-Yield Corporate Fund (VWEHX).  Core Bonds is represented by the Vanguard Total. Bond Market Index Fund (VBMFX).  Returns assume the reinvestment of all distributions.

This is akin to tactical equity strategies, which have historically out-performed the safety asset (e.g. cash) during periods of equity market tailwinds, but under-performed buy-and-hold equity during those periods due to switching costs and whipsaw. As the most aggressive stance the tactical credit strategy can take is a 100% position in high yield corporates, it would be unrealistic for us to expect such a strategy to out-perform in an environment that is conducive to strong high yield performance.

What makes this strategy different than tactical equity, however, is that the vast majority of total return in these asset classes comes from income rather than growth.  In fact, since the 1990s, the price return of high yield bonds has annualized at -0.8%.  This loss reflects defaults occurring within the portfolio offset by recovery rates.1

This is potentially problematic for a tactical strategy as it implies a significant potential opportunity cost of switching out of high yield.  However, we can also see that the price return is volatile.  In years like 2008, the price return was -27%, more than offsetting the 7%+ yield you would have achieved just holding the fund.

Source: Tiingo.  Calculations by Newfound Research.   Returns gross of all management fees and taxes, but net of underlying fund fees.

Like trend equity, we can think of this tactical credit strategy as being a combination of two portfolios:

  • A fixed-mix of 50% high yield corporates and 50% core bonds; and
  • 50% exposure to a dollar-neutral long/short portfolio that captures the tactical bet.

For example, when the tactical credit portfolio is 100% in high yield corporates, we can think of this as being a 50/50 strategy portfolio with a 50% overlay that is 100% long high yield corporates and 100% short core bonds, leading to a net exposure that is 100% long high yield corporates.

Thinking in this manner allows us to isolate the active returns of the portfolio actually being generated by the tactical signals and determine value-add beyond a diversified buy-and-hold core.  Thus, for the remainder of this commentary we will focus our exploration on the long/short component.

Before we go any further, we do want to address that a naïve comparison between high yield corporates and core fixed income may be plagued by changing composition in the underlying portfolios as well as unintended bets.  For example, without specifically duration matching the legs of the portfolio, it is likely that a dollar-neutral long/short portfolio will have residual interest rate exposure and will not represent an isolated credit bet.  Thus, naïve total return comparisons will capture both interest rate and credit-driven effects.

This is further complicated by the fact that sensitivity to these factors will change over time due both to the math of fixed income (e.g. interest rate sensitivity changing over time due to higher order effects like convexity) as well as changes in the underlying portfolio composition.  If we are not going to specifically measure and hedge out these unintended bets, we will likely want to rely on faster signals such that the bet our portfolio was attempting to capture is no longer reflected by the holdings.

We will begin by first evaluating the stability of our momentum signals.  We do this by varying formation period (i.e. lookback) and holding period of our momentum rotation strategy and calculating the corresponding t-statistic of the equity curve’s returns.  We plot the t-statistics below and specifically highlight those regions were t-statistics exceed 2, a common threshold for significance.

Source: Tiingo.  Calculations by Newfound Research.

It should be noted that data for this study only goes back to 1990, so achieving statistical significance is more difficult as the sample size is significantly reduced. Nevertheless, unlike trend equity which tends to exhibit strong significance across formation periods ranging 6-to-18 months, we see a much more limited region with tactical credit. Only formation periods from 3-to-5 months appear significant, and only with holding periods where the total period (formation plus holding period) is less than 6-months.

Note that our original choice of 63-day (approximately 3 months) formation and 21-day (approximately 1 month) hold falls within this region.

We can also see that very short formation and holding period combinations (e.g. less than one month) also appear significant.  This may be due to the design of our test.  To achieve the longest history for this study, we employed mutual funds.  However, mutual funds holding less liquid underlying securities tend to exhibit positive autocorrelation. While we adjusted realized volatility levels for this autocorrelation effect in an effort to create more realistic t-statistics, it is likely that positive results in this hyper short-term region emerge from this effect.

Finally, we can see another rather robust region representing the same formation period of 3-to-5 months, but a much longer holding length of 10-to-12 months.  For the remainder of this commentary, we’ll ignore this region, though it warrants further study.

Assuming formation and holding periods going to a daily granularity, the left-most region represents over 1,800 possible strategy combinations.  Without any particular reason for choosing one over another, we will embrace an ensemble approach, calculating the target weights for all possible combinations and averaging them together in a virtual portfolio-of-portfolios configuration.

Below we plot the long/short allocations as well as the equity curve for the ensemble long/short tactical credit strategy.

Source: Tiingo.  Calculations by Newfound Research.   Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  Returns assume the reinvestment of all distributions.

Note that each leg of the long/short portfolio does not necessarily equal 100% notional.  This reflects conflicting signals in the underlying portfolios, causing the ensemble strategy to reduce its gross allocation as a reflection of uncertainty.

As a quick aside, we do want to highlight how the performance of the ensemble compares to the performance of the underlying strategies.

Below we plot the annualized return, annualized volatility, maximum drawdown, and information ratio of all the underlying equity curves of the strategies that make up the ensemble.  We also identify the –ensemble approach–.  While we can see that the ensemble approach brings the annualized return in-line with the median annualized return, its annualized volatility is in the 14thpercentile and its maximum drawdown is in the 8thpercentile.

Source: Tiingo.  Calculations by Newfound Research.   Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  Returns assume the reinvestment of all distributions.

By maintaining the median annualized return and significantly reducing annualized volatility, the ensemble has an information ratio in the 78thpercentile.  As we’ve demonstrated in prior commentaries, by diversifying idiosyncratic specification risk, the ensemble approach is able to generate an information ratio significantly higher than the median without having to explicitly choose which specification we believe will necessarily outperform.

Given this ensemble implementation, we can now ask, “what is the driving force of strategy returns?”  In other words, does the strategy create returns by harvesting price return differences or through carry (yield) differences?

One simple way of evaluating this question is by evaluating the strategy’s sensitivity to changes in credit spreads.  Specifically, we can calculate daily changes in the ICE BofAML US High Yield Master II Option-Adjusted Spread and multiply it against the strategy’s exposure to high yield bonds on the prior day.

By accumulating these weighted changes over time, we can determine how much spread change the strategy has captured.  We can break this down further by isolating positive and negative change days and trying to figure out whether the strategy has benefited from avoiding spread expansion or from harvesting spread contraction.

In the graph below, we can see that the strategy harvested approximately 35,000 basis points (“bps”) from 12/1996 to present (the period for which credit spread data was available). Point-to-point, credit spreads actually widened by 100bps over the period, indicating that tactical changes were able to harvest significant changes in spreads.

Source: St. Louis Federal Reserve.  Calculations by Newfound Research.  

We can see that over the full period, the strategy predominately benefited from harvesting contracting spreads, as exposure to expanding spreads had a cumulative net zero impact.  This analysis is incredibly regime dependent, however, and we can see that periods like 2000-2003 and 2008 saw a large benefit from short-exposure in high yield during a period when spreads were expanding.

We can even see that in the case of post-2008, switching to long high yield exposure allowed the strategy to benefit from subsequent credit spread declines.

While this analysis provides some indication that the strategy benefits from harvesting credit spread changes, we can dig deeper by taking a regime-dependent view of performance. Specifically, we can look at strategy returns conditional upon whether spreads are above or below their long-term median, as well as whether they expand or contract in a given month.

Source: St. Louis Federal Reserve.  Calculations by Newfound Research.  Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  Returns assume the reinvestment of all distributions.

Most of the strategy return appears to occur during times when spreads are above their long-term median. Calculating regime-conditional annualized returns confirms this view.

Above

Below

Expanding

10.88%

-2.79%

Contracting

1.59%

4.22%

 

The strategy appears to perform best during periods when credit spreads are expanding above their long-term median level (e.g. crisis periods like 2008).  The strategy appears to do its worst when spreads are below their median and begin to expand, likely representing periods when the strategy is generally long high yield but has not had a chance to make a tactical switch.

This all points to the fact that the strategy harvests almost all of its returns in crisis periods.  In fact, if we remove 2000-2003 and 2008-2009, we can see that the captured credit spread declines dramatically.

Source: St. Louis Federal Reserve.  Calculations by Newfound Research.  

Capturing price returns due to changes in credit spreads are not responsible for all of the strategy’s returns, however.

Below we explicitly calculate the yield generated by the long/short strategy over time.  As high yield corporates tend to offer higher yields, when the strategy is net long high yield, the strategy’s yield is positive.  On the other hand, when the strategy is net short high yield, the strategy’s yield is negative.

This is consistent with our initial view about why these sorts of tactical strategies can be so difficult.  During the latter stages of the 2008 crisis, the long/short strategy had a net negative yield of close to -0.5% per month.2   Thus, the cost of carrying this tactical position is rather expensive and places a larger burden on the strategy accurately timing price return.

Source: Tiingo.  Calculations by Newfound Research.  Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.

From this graph, we believe there are two interesting things worth calling out:

  • The long-run average yield is positive, representing the strategy’s ability to capture carry differences between high yield and core bonds.
  • In the post-crisis environments, the strategy generates yields in excess of one standard deviation of the full-period sample, indicating that the strategy may have benefited from allocating to high yield when yields were abnormally large.

To better determine whether capturing changes in credit spreads or carry differences had a larger impact on strategy returns, we can explicitly calculate the –price– and –total return– indices of the ensemble strategy.

Source: St. Louis Federal Reserve.  Calculations by Newfound Research.  Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

The –price return– and –total return– series return 2.1% and 2.9% annualized respectively, implying that capturing price return effects account for approximately 75% of the strategy’s total return.

This is potentially concerning, because we have seen that the majority of the price return comes from a single regime: when credit spreads are above their long-term median and expanding.  As we further saw, simply removing the 2000-2003 and 2008-2009 periods significantly reduced the strategy’s ability to harvest these credit spread changes.

While the strategy may appear to be supported by nearly 30-years of empirical evidence, in reality we have a situation where the vast majority of the strategy’s returns were generated in just two regimes.

If we remove 2000-2003 and 2008-2009 from the return series, however, we can see that the total return of the strategy only falls to 0.7% and. 1.6% annualized for –price return– and –total return– respectively.  While this may appear to be a precipitous decline, it indicates that there may be potential to capture both changes in credit spread and net carry differences even in normal market environments so long as implementation costs are kept low enough.

Source: Tiingo.  Calculations by Newfound Research.  Tactical Credit strategy returns are hypothetical and backtested.  Returns gross of all management fees and taxes, but net of underlying fund fees.  Total return series assumes the reinvestment of all distributions.

Conclusion

In this commentary, we explored a tactical credit strategy that switched between high yield corporate bonds and core fixed income.  We decompose these strategies into a 50% high yield / 50% core fixed income portfolio that is overlaid with 50% exposure to a dollar-neutral long/short strategy that captures the tactical tilts.  We focus our exploration on the dollar-neutral long/short portfolio, as it isolates the active bets of the strategy.

Using cross-sectional momentum, we found that short-term signals with formation periods ranging from 3-to-5 months were statistically significant, so long as the holding period was sufficiently short.

We used this information to construct an ensemble strategy made out of more than 1,800 underlying strategy specifications.  Consistent with past research, we found that the ensemble closely tracked the median annualized return of the underlying strategies, but had significantly lower volatility and maximum drawdown, leading to a higher information ratio.

We then attempted to deconstruct where the strategy generated its returns from.  We found that a significant proportion of total returns were achieved during periods when credit spreads were above their long-term median and expanding.  This is consistent with periods of economic volatility such as 2000-2003 and 2008-2009.

The strategy also benefited from harvesting net carry differences between high yield and core fixed income.  Explicitly calculating strategy price and total return, we find that this carry component accounts for approximately 25% of strategy returns.

The impact of the 2000-2003 and 2008-2009 periods on strategy returns should not be understated.   Removing these time periods reduced strategy returns from 2.9% to 1.6% annualized. Interestingly, however, the proportion of total return explained by net carry only increased from 25% to 50%, potentially indicating that the strategy was still able to harvest some opportunities in changing credit spreads.

For investors evaluating these types of strategies, cost will be an important component.  While environments like 2008 may lead to opportunities for significant out-performance, without them the strategy may offer anemic returns.  This is especially true when we recall that a long-only implementation only has 50% implicit exposure to the long/short strategy we evaluated in this piece.

Thus, the 2.9% annualized return is really closer to a 1.5% annualized excess return above the 50/50 portfolio.  For the ex-crisis periods, the number is closer to 0.8% annualized.  When we consider that this analysis was done without explicit consideration for management costs or trading costs and we have yet to apply an appropriate expectation haircut given the fact that this analysis was all backtested, there may not be sufficient juice to squeeze.

That said, we only evaluated a single signal in this piece.  Combining momentum with valuation, carry, or even macro-economic signals may lead to significantly better performance.  Further, high yield corporates is a space where empirical evidence suggests that security selection can make a large difference.  Careful selection of funds may lead to meaningfully better performance than just broad asset class exposure.

 


 

Tactical Portable Beta

This post is available as a PDF download here.

Summary­

  • In this commentary, we revisit the idea of portable beta: utilizing leverage to overlay traditional risk premia on existing strategic allocations.
  • While a 1.5x levered 60/40 portfolio has historically out-performed an all equity blend with similar risk levels, it can suffer through prolonged periods of under-performance.
  • Positive correlations between stocks and bonds, inverted yield curves, and rising interest rate environments can make simply adding bond exposure on top of equity exposure a non-trivial pursuit.
  • We rely on prior research to introduce a tactical 90/60 model, which uses trend signals to govern equity exposure and value, momentum, and carry signals to govern bond exposure.
  • We find that such a model has historically exhibited returns in-line with equities with significantly lower maximum drawdown.

In November 2017, I was invited to participate in a Bloomberg roundtable discussion with Barry Ritholtz, Dave Nadig, and Ben Fulton about the future of ETFs.  I was quoted as saying,

Most of the industry agrees that we are entering a period of much lower returns for stocks and fixed income. That’s a problem for younger generations. The innovation needs to be around efficient use of capital. Instead of an ETF that holds intermediate-term Treasuries, I would like to see a U.S. Treasury ETF that uses Treasuries as collateral to buy S&P 500 futures, so you end up getting both stock and bond exposure.  By introducing a modest amount of leverage, you can take $1 and trade it as if the investor has $1.50. After 2008, people became skittish around derivatives, shorting, and leverage. But these aren’t bad things when used appropriately.

Shortly after the publication of the discussion, we penned a research commentary titled Portable Beta which extolled the potential virtues of employing prudent leverage to better exploit diversification opportunities.  For investors seeking to enhance returns, increasing beta exposure may be a more reliable approach than the pursuit of alpha.

In August 2018, WisdomTree introduced the 90/60 U.S. Balanced Fund (ticker: NTSX), which blends core equity exposure with a U.S. Treasury futures ladder to create the equivalent of a 1.5x levered 60/40 portfolio.  On March 27, 2019, NTSX was awarded ETF.com’s Most Innovative New ETF of 2018.

The idea of portable beta was not even remotely uniquely ours.  Two anonymous Twitter users – “Jake” (@EconomPic) and “Unrelated Nonsense” (@Nonrelatedsense) – had discussed the idea several times prior to my round-table in 2017.  They argued that such a product could be useful to free up space in a portfolio for alpha-generating ideas.  For example, an investor could hold 66.6% of their wealth in a 90/60 portfolio and use the other 33.3% of their portfolio for alpha ideas.  While the leverage is technically applied to the 60/40, the net effect would be a 60/40 portfolio with a set of alpha ideas overlaid on the portfolio. Portable beta becomes portable alpha.

Even then, the idea was not new.  After NTSX launched, Cliff Asness, co-founder and principal of AQR Capital Management, commented on Twitter that even though he had a “22-year head start,” WisdomTree had beat him to launching a fund.  In the tweet, he linked to an article he wrote in 1996, titled Why Not 100% Equities, wherein Cliff demonstrated that from 1926 to 1993 a 60/40 portfolio levered to the same volatility as equities achieved an excess return of 0.8% annualized above U.S. equities.  Interestingly, the appropriate amount of leverage utilized to match equities was 155%, almost perfectly matching the 90/60 concept.

Source: Asness, Cliff. Why Not 100% Equities.  Journal of Portfolio Management, Winter 1996, Volume 22 Number 2.

Following up on Cliff’s Tweet, Jeremy Schwartz from WisdomTree extended the research out-of-sample, covering the quarter century that followed Cliff’s initial publishing date.  Over the subsequent 25 years, Jeremy found that a levered 60/40 outperformed U.S. equities by 2.6% annualized.

NTSX is not the first product to try to exploit the idea of diversification and leverage.  These ideas have been the backbone of managed futures and risk parity strategies for decades. The entire PIMCO’s StocksPLUS suite – which traces its history back to 1986 – is built on these foundations.  The core strategy combines an actively managed portfolio of fixed income with 100% notional exposure in S&P 500 futures to create a 2x levered 50/50 portfolio.

The concept traces its roots back to the earliest eras of modern financial theory. Finding the maximum Sharpe ratio portfolio and gearing it to the appropriate risk level has always been considered to be the theoretically optimal solution for investors.

Nevertheless, after 2008, the words “leverage” and “derivatives” have largely been terms non gratisin the realm of investment products. But that may be to the detriment of investors.

90/60 Through the Decades

While we are proponents of the foundational concepts of the 90/60 portfolio, frequent readers of our commentary will not be surprised to learn that we believe there may be opportunities to enhance the idea through tactical asset allocation.  After all, while a 90/60 may have out-performed over the long run, the short-run opportunities available to investors can deviate significantly.  The prudent allocation at the top of the dot-com bubble may have looked quite different than that at the bottom of the 2008 crisis.

To broadly demonstrate this idea, we can examine the how the realized efficient frontier of stock/bond mixes has changed shape over time.  In the table below, we calculate the Sharpe ratio for different stock/bond mixes realized in each decade from the 1920s through present.

Source: Global Financial Data.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   Bonds are the GFD Indices USA 10-Year Government Bond Total Return Index and Stocks are the S&P 500 Total Return Index (with GFD Extension).  Sharpe ratios are calculated with returns excess of the GFD Indices USA Total Return T-Bill Index.  You cannot invest in an index.  2010s reflect a partial decade through 4/2019.

We should note here that the original research proposed by Asness (1996) assumed a bond allocation to an Ibbotson corporate bond series while we employ a constant maturity 10-year U.S. Treasury index.  While this leads to lower total returns in our bond series, we do not believe it meaningfully changes the conclusions of our analysis.

We can see that while the 60/40 portfolio has a higher realized Sharpe ratio than the 100% equity portfolio in eight of ten decades, it has a lower Sharpe ratio in two consecutive decades from 1950 – 1960.  And the 1970s were not a ringing endorsement.

In theory, a higher Sharpe ratio for a 60/40 portfolio would imply that an appropriately levered version would lead to higher realized returns than equities at the same risk level.  Knowing the appropriate leverage level, however, is non-trivial, requiring an estimate of equity volatility.  Furthermore, leverage requires margin collateral and the application of borrowing rates, which can create a drag on returns.

Even if we conveniently ignore these points and assume a constant 90/60, we can still see that such an approach can go through lengthy periods of relative under-performance compared to buy-and-hold equity.  Below we plot the annualized rolling 3-year returns of a 90/60 portfolio (assuming U.S. T-Bill rates for leverage costs) minus 100% equity returns.  We can clearly see that the 1950s through the 1980s were largely a period where applying such an approach would have been frustrating.

Source: Global Financial Data.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.   Bonds are the GFD Indices USA 10-Year Government Bond Total Return Index and Stocks are the S&P 500 Total Return Index (with GFD Extension).  The 90/60 portfolio invests 150% each month in the 60/40 portfolio and -50% in the GFD Indices USA Total Return T-Bill Index.  You cannot invest in an index.

Poor performance of the 90/60 portfolio in this era is due to two effects.

First, 10-year U.S. Treasury rates rose from approximately 4% to north of 15%.  While a constant maturity index would constantly roll into higher interest bonds, it would have to do so by selling old holdings at a loss.  Constantly harvesting price losses created a headwind for the index.

This is compounded in the 90/60 by the fact that the yield curve over this period spent significant time in an inverted state, meaning that the cost of leverage exceeded the yield earned on 40% of the portfolio, leading to negative carry. This is illustrated in the chart below, with –T-Bills– realizing a higher total return over the period than –Bonds–.

Source: Global Financial Data.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   T-Bills are the GFD Indices USA Total Return T-Bill Index, Bonds are the GFD Indices USA 10-Year Government Bond Total Return Index, and Stocks are the S&P 500 Total Return Index (with GFD Extension). You cannot invest in an index.

This is all arguably further complicated by the fact that while a 1.5x levered 60/40 may closely approximate the risk level of a 100% equity portfolio over the long run, it may be a far cry from it over the short-run.  This may be particularly true during periods where stocks and bonds exhibit positive realized correlations as they did during the 1960s through 1980s.  This can occur when markets are more pre-occupied with inflation risk than economic risk.  As inflationary fears abated and economic risk become the foremost concern in the 1990s, correlations between stocks and bonds flipped.

Thus, during the 1960s-1980s, a 90/60 portfolio exhibited realized volatility levels in excess of an all-equity portfolio, while in the 2000s it has been below.

This all invites the question: should our levered allocation necessarily be static?

Getting Tactical with a 90/60

We might consider two approaches to creating a tactical 90/60.

The first is to abandon the 90/60 model outright for a more theoretically sound approach. Specifically, we could attempt to estimate the maximum Sharpe ratio portfolio, and then apply the appropriate leverage such that we either hit a (1) constant target volatility or (2) the volatility of equities.  This would require us to not only accurately estimate the expected excess returns of stocks and bonds, but also their volatilities and correlations. Furthermore, when the Sharpe optimal portfolio is highly conservative, notional exposure far exceeding 200% may be necessary to hit target volatility levels.

In the second approach, equity and bond exposure would each be adjusted tactically, without regard for the other exposure.  While less theoretically sound, one might interpret this approach as saying, “we generally want exposure to the equity and bond risk premia over the long run, and we like the 60/40 framework, but there might be certain scenarios whereby we believe the expected return does not justify the risk.”  The downside to this approach is that it may sacrifice potential diversification benefits between stocks and bonds.

Given the original concept of portable beta is to increase exposure to the risk premia we’re already exposed to, we prefer the second approach.  We believe it more accurately reflects the notion of trying to provide long-term exposure to return-generating risk premia while trying to avoid the significant and prolonged drawdowns that can be realized with buy-and-hold approaches.

Equity Signals

To manage exposure to the equity risk premium, our preferred method is the application of trend following signals in an approach we call trend equity.  We will approximate this class of strategies with our Newfound Research U.S. Trend Equity Index.

To determine whether our signals are able to achieve their goal of “protect and participate” with the underlying risk premia, we will plot their regime-conditional betas.  To do this, we construct a simple linear model:

We define a bear regime as the worst 16% of monthly returns, a bull regime as the best 16% of monthly returns, and a normal regime as the remaining 68% of months. Note that the bottom and top 16thpercentiles are selected to reflect one standard deviation.

Below we plot the strategy conditional betas relative to U.S. equity

We can see that trend equity has a normal regime beta to U.S. equities of approximately 0.75 and a bear market beta of 0.5, in-line with expectations that such a strategy might capture 70-80% of the upside of U.S. equities in a bull market and 40-50% of the downside in a prolonged bear market. Trend equity beta of U.S. equities in a bull regime is close to the bear market beta, which is consistent with the idea that trend equity as a style has historically sacrificed the best returns to avoid the worst.

Bond Signals

To govern exposure to the bond risk premium, we prefer an approach based upon a combination of quantitative, factor-based signals.  We’ve written about many of these signals over the last two years; specifically in Duration Timing with Style Premia (June 2017), Timing Bonds with Value, Momentum, and Carry (January 2018), and A Carry-Trend-Hedge Approach to Duration Timing (October 2018).  In these three articles we explore various mixes of value, momentum, carry, flight-to-safety, and bond risk premium measures as potential signals for timing duration exposure.

We will not belabor this commentary unnecessarily by repeating past research.  Suffice it to say that we believe there is sufficient evidence that value (deviation in real yield), momentum (prior returns), and carry (term spread) can be utilized as effective timing signals and in this commentary are used to construct bond indices where allocations are varied between 0-100%.  Curious readers can pursue further details of how we construct these signals in the commentaries above.

As before, we can determine conditional regime betas for strategies based upon our signals.

We can see that our value, momentum, and carry signals all exhibit an asymmetric beta profile with respect to 10-year U.S. Treasury returns.  Carry and momentum exhibit an increase in bull market betas while value exhibits a decrease in bear market beta.

Combining Equity and Bond Signals into a Tactical 90/60

Given these signals, we will construct a tactical 90/60 portfolio as being comprised of 90% trend equity, 20% bond value, 20% bond momentum, and 20% bond carry. When notional exposure exceeds 100%, leverage cost is assumed to be U.S. T-Bills.  Taken together, the portfolio has a large breadth of potential configurations, ranging from 100% T-Bills to a 1.5x levered 60/40 portfolio.

But what is the appropriate benchmark for such a model?

In the past, we have argued that the appropriate benchmark for trend equity is a 50% stock / 50% cash benchmark, as it not only reflects the strategic allocation to equities empirically seen in return decompositions, but it also allows both positive and negative trend calls to contribute to active returns.

Similarly, we would argue that the appropriate benchmark for our tactical 90/60 model is not a 90/60 itself – which reflects the upper limit of potential capital allocation – but rather a 45% stock / 30% bond / 25% cash mix.  Though, for good measure we might also consider a bit of hand-waving and just use a 60/40 as a generic benchmark as well.

Below we plot the annualized returns versus maximum drawdown for different passive and active portfolio combinations from 1974 to present (reflecting the full period of time when strategy data is available for all tactical signals).  We can see that not only does the tactical 90/60 model (with both trend equity and tactical bonds) offer a return in line with U.S. equities over the period, it does so with significantly less drawdown (approximately half).  Furthermore, the tactical 90/60 exceeded trend equity and 60/40 annualized returns by 102 and 161 basis points respectively.

These improvements to the return and risk were achieved with the same amount of capital commitment as in the other allocations. That’s the beauty of portable beta.

Source: Federal Reserve of St. Louis, Kenneth French Data Library, and Newfound Research.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   You cannot invest in an index.

Of course, full-period metrics can deceive what an investor’s experience may actually be like.  Below we plot rolling 3-year annualized returns of U.S. equities, the 60/40 mix, trend equity, and the tactical 90/60.

Source: Federal Reserve of St. Louis, Kenneth French Data Library, and Newfound Research.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   You cannot invest in an index.

The tactical 90/60 model out-performed a 60/40 in 68% of rolling 3-year periods and the trend equity model in 71% of rolling 3-year periods.  The tactical 90/60, however, only out-performs U.S. equities in 35% of rolling 3-year periods, with the vast majority of relative out-performance emerging during significant equity drawdown periods.

For investors already allocated to trend equity strategies, portable beta – or portable tactical beta – may represent an alternative source of potential return enhancement.  Rather than seeking opportunities for alpha, portable beta allows for an overlay of more traditional risk premia, which may be more reliable from an empirical and academic standpoint.

The potential for increased returns is illustrated below in the rolling 3-year annualized return difference between the tactical 90/60 model and the Newfound U.S. Trend Equity Index.

Source: Federal Reserve of St. Louis, Kenneth French Data Library, and Newfound Research.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   You cannot invest in an index.

From Theory to Implementation

In practice, it may be easier to acquire leverage through the use of futures contracts. For example, applying portable bond beta on-top of an existing trend equity strategy may be achieved through the use of 10-year U.S. Treasury futures.

Below we plot the growth of $1 in the Newfound U.S. Trend Equity Index and a tactical 90/60 model implemented with Treasury futures.  Annualized return increases from 7.7% to 8.9% and annualized volatility declines from 9.7% to 8.5%.  Finally, maximum drawdown decreases from 18.1% to 14.3%.

We believe the increased return reflects the potential return enhancement benefits from introducing further exposure to traditional risk premia, while the reduction in risk reflects the benefit achieved through greater portfolio diversification.

Source: Quandl and Newfound Research.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   You cannot invest in an index.

It should be noted, however, that a levered constant maturity 10-year U.S. Treasury index and 10-year U.S. Treasury futures are not the same.  The futures contracts are specified such that eligible securities for delivery include Treasury notes with a remaining term to maturity of between 6.5 and 10 years.  This means that the investor short the futures contract has the option of which Treasury note to deliver across a wide spectrum of securities with potentially varying characteristics.

In theory, this investor will always choose to deliver the bond that is cheapest. Thus, Treasury futures prices will reflect price changes of this so-calledcheapest-to-deliver bond, which often does not reflect an actual on-the-run 10-year Treasury note.

Treasury futures therefore utilize a “conversion factor” invoicing system referenced to the 6% futures contract standard.  Pricing also reflects a basis adjustment that reflects the coupon income a cash bond holder would receive minus financing costs (i.e. the cost of carry) as well as the value of optionality provided to the futures seller.

Below we plot monthly returns of 10-year U.S. Treasury futures versus the excess returns of a constant maturity 10-year U.S. Treasury index.  We can see that the futures had a beta of approximately 0.76 over the nearly 20-year period, which closely aligns with the conversion factor over the period.

Source: Quandl and the Federal Reserve of St. Louis.  Calculations by Newfound Research.

Despite these differences, futures can represent a highly liquid and cost-effective means of implementing a portable beta strategy.  It should be further noted that having a lower “beta” over the last two decades has not necessarily implied a lower return as the basis adjustment can have a considerable impact.  We demonstrate this in the graph below by plotting the returns of continuously-rolled 10-year U.S. Treasury futures (rolled on open interest) and the excess return of a constant maturity 10-year U.S. Treasury index.

Source: Quandl and Newfound Research.  Calculations by Newfound Research.  Returns are hypothetical and backtested.  Returns are gross of all fees, transaction costs, and taxes.  Returns assume the reinvestment of all distributions.   You cannot invest in an index.

Conclusion

In a low return environment, portable beta may be a necessary tool for investors to generate the returns they need to hit their financial goals and reduce their risk of failing slow.

Historically, a 90/60 portfolio has outperformed equities with a similar level of risk. However, the short-term dynamics between stocks and bonds can make the volatility of a 90/60 portfolio significantly higher than a simple buy-and-hold equity portfolio. Rising interest rates and inverted yield curves can further confound the potential benefits versus an all-equity portfolio.

Since constant leverage is not a guarantee and we do not know how the future will play out, moving beyond standard portable beta implementations to tactical solutions may augment the potential for risk management and lead to a smoother ride over the short-term.

Getting over the fear of using leverage and derivatives may be an uphill battle for investors, but when used appropriately, these tools can make portfolios work harder. Risks that are known and compensated with premiums can be prudent to take for those willing to venture out and bear them.

If you are interested in learning how Newfound applies the concepts of tactical portable beta to its mandates, please reach out (info@thinknewfound.com).

Style Surfing the Business Cycle

This post is available as a PDF download here.

Summary­

  • In this commentary, we ask whether we should consider rotating factor exposure based upon the business cycle.
  • To eliminate a source of model risk, we assume perfect knowledge of future recessions, allowing us to focus only on whether prevailing wisdom about which factors work during certain economic phases actually adds value.
  • Using two models of factor rotation and two definitions of business cycles, we construct four timing portfolios and ultimately find that rotating factor exposures does not add meaningful value above a diversified benchmark.
  • We find that the cycle-driven factor rotation recommendations are extremely close to data-mined optimal results. The similarity of the recommendations coupled with the lackluster performance of conventional style timing recommendations may highlight how fragile the rotation process inherently is.

Just as soon as the market began to meaningfully adopt factor investing, someone had to go and ask, “yeah, but can they be timed?”  After all, while the potential opportunity to harvest excess returns is great, who wants to live through a decade of relative drawdowns like we’re seeing with the value factor?

And thus the great valuation-spread factor timing debates of 2017 were born and from the ensuing chaos emerged new, dynamic factor rotation products.

There is no shortage of ways to test factor rotation: valuation-spreads, momentum, and mean-reversion to name a few.  We have even found mild success using momentum and mean reversion, though we ultimately question whether the post-cost headache is worth the potential benefit above a well-diversified portfolio.

Another potential idea is to time factor exposure based upon the state of the economic or business cycle.

It is easy to construct a narrative for this approach.  For example, it sounds logical that you might want to hold higher quality, defensive stocks during a recession to take advantage of the market’s flight-to-safety.  On the other hand, it may make sense to overweight value during a recovery to exploit larger mispricings that might have occurred during the contraction period.

An easy counter-example, however, is the performance of value during the last two recessions.  During the dot-com fall-out, cheap out-performed expensive by a wide margin. This fit a wonderful narrative of value as a defensive style of investing, as we are buying assets at a discount to intrinsic value and therefore establishing a margin of safety.

Of course, we need only look towards 2008 to see a very different scenario.  From peak to trough, AQR’s HML Devil factor had a drawdown of nearly 40% during that crisis.

Two recessions with two very different outcomes for a single factor.  But perhaps there is still hope for this approach if we diversify across enough factors and apply it over the long run.

The problem we face with business cycle style timing is really two-fold.  First, we have to be able to identify the factors that will do well in a given market environment.  Equally important, however, is our ability to predict the future economic environment.

Philosophically, there are limitations in our ability to accurately identify both simultaneously.  After all, if we could predict both perfectly, we could construct an arbitrage.

If we believe the markets are at all efficient, then being able to identify the factors that will out-perform in a given state of the business cycle should lead us to conclude that we cannot predict the future state of the business cycle. Similarly, if we believe we can predict the future state of the business cycle, we should not be able to predict which factors will necessarily do well.

Philosophical arguments aside, we wanted to test the efficacy of this approach. 

Which Factors and When?

Rather than simply perform a data-mining exercise to determine which factors have done well in each economic environment, we wanted to test prevalent beliefs about factor performance and economic cycles.  To do this, we identified marketing and research materials from two investment institutions that tie factor allocation recommendations to the business cycle.

Both models expressed a view using four stages of the economic environment: a slowdown, a contraction, a recovery, and an economic expansion.

Model #1

  • Slowdown: Momentum, Quality, Low Volatility
  • Contraction: Value, Quality, Low Volatility
  • Recovery: Value, Size
  • Expansion: Value, Size, Momentum

Model #2

  • Slowdown: Quality, Low Volatility
  • Contraction: Momentum, Quality, Low Volatility
  • Recovery: Value, Size
  • Expansion: Value, Size, Momentum

Defining the Business Cycle

Given these models, our next step was to build a model to identify the current economic environment.  Rather than build a model, however, we decided to dust off our crystal ball. After all, if business-cycle-based factor rotation does not work with perfect foresight of the economic environment, what hope do we have for when we have to predict the environment?

We elected to use the National Bureau of Economic Research’s (“NBER”) listed history of US business cycle expansions and contractions.  With the benefit of hindsight, they label recessions as the peak of the business cycle prior to the subsequent trough.

Unfortunately, NBER only provides a simple indicator as to whether a given month is in a recession or not.  We were left to fill in the blanks around what constitutes a slowdown, a contraction, a recovery, and an expansionary period.  Here we settled on two definitions:

Definition #1

  • Slowdown: The first half of an identified recession
  • Contraction: The second half of an identified recession
  • Recovery: The first third of a non-recessionary period
  • Expansion: The remaining part of a non-recessionary period

Definition #2

  • Slowdown: The 12-months leading up to a recession
  • Contraction: The identified recessionary periods
  • Recovery: The 12-months after an identified recession
  • Expansion: The remaining non-recessionary period

For definition #2, in the case where two recessions were 12 or fewer months apart (as was the case in the 1980s), the intermediate period was split equivalently into recovery and slowdown.  

Implementing Factor Rotation

After establishing the rotation rules and using our crystal ball to identify the different periods of the business cycle, our next step was to build the factor rotation portfolios.

We first sourced monthly long/short equity factor returns for size, value, momentum, and quality from AQR’s data library.  To construct a low-volatility factor, we used portfolios sorted on variance from the Kenneth French library and subtracted bottom-quintile returns from top-quintile returns.

As the goal of our study is to identify the benefit of factor timing, we de-meaned the monthly returns by the average of all factor returns in that month to identify relative performance.

We constructed four portfolios using the two factor rotation definitions and the two economic cycle definitions.  Generically, at the end of each month, we would use the next month’s economic cycle label to identify which factors to hold in our portfolio.  Identified factors were held in equal weight.

Below we plot the four equity curves.  Remember that these series are generated using de-meaned return data, so reflect the out-performance against an equal-weight factor benchmark.

 Source: NBER, AQR, and Kenneth French Data Library. Calculations by Newfound Research. Returns are backtested and hypothetical. Returns assume the reinvestment of all distributions.  Returns are gross of all fees.  None of the strategies shown reflect any portfolio managed by Newfound Research and were constructed solely for demonstration purposes within this commentary.  You cannot invest in an index.

It would appear that even with a crystal ball, conventional wisdom about style rotation and business cycles may not hold.  And even where it might, we can see multi-decade periods where it adds little-to-no value.

Data-Mining Our Way to Success

If we are going to use a crystal ball, we might as well just blatantly data-mine our way to success and see what we learn along the way.

To achieve this goal, we can simply look at the annualized de-meaned returns of each factor during each period of the business cycle.

Source: NBER, AQR, and Kenneth French Data Library.  Calculations by Newfound Research.  Returns are backtested and hypothetical.  Returns assume the reinvestment of all distributions.  Returns are gross of all fees.  None of the strategies shown reflect any portfolio managed by Newfound Research and were constructed solely for demonstration purposes within this commentary.  You cannot invest in an index.

Despite two different definitions of the business cycle, we can see a strong alignment in which factors work when.  Slow-downs / pre-recessionary periods are tilted towards momentum and defensive factors like quality and low-volatility.  Momentum may seem like a curious factor, but its high turnover may give it a chameleon-like nature that can tilt it defensively in certain scenarios.

In a recession, momentum is replaced with value while quality and low-volatility remain. In the initial recovery, small-caps, value, and momentum are favored.  In this case, while value may actually be benefiting from multiple expansion, small-caps may simply be a way to play higher beta.  Finally, momentum is strongly favored during an expansion.

Yet even a data-mined solution is not without its flaws.  Below we plot rolling 3-year returns for our data-mined timing strategies.  Again, remember that these series are generated using de-meaned return data, so reflect the out-performance against an equal-weight factor benchmark.

Source: NBER, AQR, and Kenneth French Data Library.  Calculations by Newfound Research.  Returns are backtested and hypothetical.  Returns assume the reinvestment of all distributions.  Returns are gross of all fees.  None of the strategies shown reflect any portfolio managed by Newfound Research and were constructed solely for demonstration purposes within this commentary.  You cannot invest in an index.

Despite a crystal ball telling us what part of the business cycle we are in and completely data-mined results, there are still a number of 3-year periods with low-to-negative results.  And we have not even considered manager costs, transaction costs, or taxes yet.

A few more important things to note.

Several of these factors exhibit strong negative performance during certain parts of the market cycle, indicating a potential for out-performance by taking the opposite side of the factor.  For example, value appears to do poorly during pre-recession and expansion periods.  One hypothesis is that during expansionary periods, markets tend to over-extrapolate earnings growth potential, favoring growth companies that appear more expensive.

We should also remember that our test is on long/short portfolios and may not necessarily be relevant for long-only investors.  While we can think of a long-only portfolio as a market-cap portfolio plus a long/short portfolio, the implicit long/short is not necessarily identical to academic factor definitions.

Finally, it is worth considering that these results are data-mined over a 50+ year period, which may allow outlier events to dramatically skew the results.  Momentum, for example, famously exhibited dramatic crashes during the Great Depression and in the 2008-crisis, but may have actually relatively out-performed in other recessions.

Conclusion

In this commentary we sought to answer the question, “can we use the business cycle to time factor exposures?”  Assuming access to a crystal ball that could tell us where we stood precisely in the business cycle, we found that conventional wisdom about factor timing did not add meaningful value over time.  We do not hold out much hope, based on this conventional wisdom, that someone without a crystal ball would fare much better.

Despite explicitly trying to select models that reflected conventional wisdom, we found a significant degree of similarity in these recommendations with those that came from blindly data-mining optimal results.  Nevertheless, even slight recommendation differences lead to lackluster results.

The similarities between data-mined results and conventional wisdom, however, should give us pause.  While the argument for conventional wisdom is often a well-articulated economic rationale, we have to wonder whether we have simply fooled ourselves with a narrative that has been inherently constructed with the benefit of hindsight.

Page 7 of 18

Powered by WordPress & Theme by Anders Norén