The Research Library of Newfound Research

Category: Trend Page 2 of 7

Can Managed Futures Offset Equity Losses?

This post is available as a PDF download here.

Summary

  • Managed futures strategies have historically provided meaningful positive returns during left-tail equity events. Yet as a trading strategy, this outcome is by no means guaranteed.
  • While trend following is “mechanically convex,” the diverse nature of managed futures programs may actually prevent the strategy from offsetting equity market losses.
  • We generate a large number of random managed futures strategies by varying the asset classes included. We find that more diverse strategies have, historically, provided a larger offset to negative equity events.
  • This curious outcome appears to be caused by two effects: (1) diversification allows for increased total notional exposure; and (2) past crises saw coincidental trends across multiple markets simultaneously.
  • Therefore, for investors trying to offset equity market losses, an allocation to managed futures requires believing that future crises will be marked by a large number of simultaneous trends across multiple assets.
  • Less diversified strategies – such as just trading S&P 500 futures contracts – appear to work if the volatility target is removed.

Shortly after the 2008 crisis, the appetite for risk management strategies exploded.  At the forefront of this trend was managed futures, which had already proven itself in the dot-com fallout.  With the Societe Generale Trend Index1 returning 20.9% in 2008, the evidence for CTAs to provide “crisis alpha”2 seemed un-debatable.  AUM in these strategies sky-rocketed, growing from $200 billion in 2007 to approximately $325 billion by 2012.

Source: http://managedfuturesinvesting.com

Subsequent performance has, unfortunately, been lack-luster.  Since 12/31/2011, the SG Trend Index has returned just 14.2% compared to the S&P 500’s 200.8% total return.  While this is an unfair, apples-to-oranges comparison, it does capture the dispersion the strategy has exhibited to the benchmark most investors measure performance against during a bull market.

Furthermore, the allocation to managed futures had to come from somewhere.  If investors reduced exposure to equities to introduce managed futures, the spread in performance captures the opportunity cost of that decision.  There is hope yet: if the S&P 500 fell 50% over the next year, managed futures would have to return just 32% for their full-period performance (2011-2020) to equalize.

Yet how certain are we that managed futures would necessarily generate a positive return in an S&P 500 left-tail environment?  Hurst, Ooi, and Pedersen (2017)3 find that managed futures have generated anything from flat to meaningfully positive results during the top 10 largest drawdowns of a 60/40 portfolio since the late 1800s.  This evidence makes a strong empirical case, but we should acknowledge the N=10 nature of the data.

Perhaps we can lean into the mechanically convex nature of trend following.  Trend following is a close cousin to the trading strategy that delta-hedges a strangle, generating the pay-off profile of a straddle (long an at-the-money put and call).  Even without an anomalous premium generated by autocorrelation in the underlying security, the trading strategy itself should – barring trading frictions – generate a convex payoff.

Yet while mechanical convexity may be true on a contract-by-contract basis, it is entirely possible that the convexity we want to see emerge is diluted by trades across other contracts.  Consider the scenario where the S&P 500 enters a prolonged and significant drawdown and our managed futures strategy goes short S&P 500 futures contract.  While this trade may generate the hedge we were looking for, it’s possible that it is diluted by trades on other contracts such as wheat, the Japanese Yen, or the German Bund.

When we consider that many investors have portfolios dominated by equity risk (recall that equities have historically contributed 90% of the realized volatility for a 60/40 portfolio), it is possible that too much breadth within a managed futures portfolio could actually prevent it from providing negative beta during left-tail equity events.

 

Replicating Managed Futures

We begin our study by first replicating a generic trend-following CTA index.  We adopt an ensemble approach, which is effectively equivalent to holding a basket of managers who each implement a trend-following strategy with a different model and parameterization.

Specifically, we assume each manager implements using the same 47 contracts that represent a diversified basket of equities, rates, commodities, and currencies.4

We implement with three different models (total return, price-minus-moving-average, and dual-moving-average-cross) and five potential lookback specifications (21, 42, 84, 168, and 336 days) for a total of 15 different implementations.

Each implementation begins by calculating an equal-risk contribution (“risk parity”) portfolio.  Weights for each contract are then multiplied by their trend signal (which is simply either +1 or -1).

The weights for all 15 implementations are then averaged together to generate our index weights.  Notional exposure of the aggregate weights is then scaled to target a 10% annualized volatility level.  We assume that the index is fully collateralized using the S&P U.S. Treasury Bill Index.

Below we plot our index versus the SG Trend Index.  The correlation of monthly returns between these two indices is 75% suggesting that our simple implementation does a reasonable job approximating the broad trend-following style of CTAs.  We can also see that it captures the salient features of the SG Trend Index, including strong performance from 2001-2003, Q4 2008 and Q1 2009, and the 2014-2015 period.  We can also see it closely tracks the shape the SG Trend Index equity curve from 2015 onward in all its meandering glory.

Source: Stevens Analytics.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

Convexity versus Diversification

To explore the impact of diversification in managed futures versus convexity exhibited against the S&P 500, we will create a number of managed futures strategies and vary the number of contracts included.  As we are attempting to create a convex payoff against the S&P 500, the S&P 500 futures contract will always be selected.

For example, a 2-contract strategy will always include S&P 500 futures, but the second contract could be 10-year U.S. Treasuries, the Nikkei, the Australian Dollar, Oil, or any of the other 42 futures contracts.  Once selected, however, that pair defines the strategy.

For 2-, 4-, 8-, 16-, and 32- contract systems, we generate the performance of 25 randomly selected strategies.  We then generate scatter plots with non-overlapping 6-month returns for the S&P 500 on the x-axis and non-overlapping 6-month returns for the managed futures strategies on the y-axis.5 We then fit a 2nd-degree polynomial line to visualize the realized convexity.

(Note that for the single contract case – i.e. just the S&P 500 futures contract – we plot overlapping 6-month returns.)

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

There are two particularly interesting artifacts to note.

First, as the number of contracts goes up, the best-fit model turns from a “smile” to a “smirk,” suggesting that diversification dilutes positive convexity relationships with the S&P 500.  This outcome should have been expected, as we generally know how managed futures has done over the 20-year period we’re examining.  Namely, managed futures did quite well offsetting losses in 2000-2003 and 2008-2009, but has failed to participate in the 2010s.

Perhaps more interestingly, however, is the increase in left-tail performance of managed futures, climbing from 20% when just trading the S&P 500 futures contract to 150% in the 32-contract case.  The subtle reason here is diversification’s impact on total notional exposure.

Consider this trivial example: Asset A and Asset B have constant 10% volatility and are uncorrelated with one another.  As they are uncorrelated, any combination of these assets will have a volatility that is less than 10%.  Therefore, if we want to achieve 10%, we need to apply leverage.  In fact, a 50-50 mix of these assets requires us to apply 1.41x leverage to achieve our volatility target, resulting in 70.7% exposure to each asset.

As a more concrete example, when trading just the S&P 500 futures contract, achieving 10% volatility position in 2008 requires diluting gross notional exposure to just 16%.  For the full, 47-contract model, gross notional exposure during 2008 dipped to 90% at its lowest point.

Now consider that trend following tends to transform the underlying distributions of assets to generate positive skewness.  Increasing leverage can help push those positive trades even further out in the tails.

But here’s the trade-off: the actual exposure to S&P 500 futures contracts, specifically, still remains much, much higher in the case where we’re trading it alone.  In practice, the reason the diversified approach was able to generate increased returns during left-tail equity events – such as 2008 – is due to the fact correlations crashed to extremes (both positive and negative) between global equity indices, rates, commodities, and currencies.  This allowed the total notional exposure of directionally similar trades (e.g. short equities, long bonds, and short commodities in 2008) to far exceed the total notional exposure achieved if we were just trading the S&P 500 futures contract alone.

Source: Stevens Analytics.  Calculations by Newfound Research. 

Our confidence in achieving negative convexity versus equity left-tail events, therefore, is inherently tied to our belief that we will see simultaneously trends across a large number of assets during such environments.

Another interpretation of this data is that because negative trends in the S&P 500 have historically coincided with higher volatility, a strategy that seeks to trade just the S&P 500 futures with constant volatility will lose convexity in those tail events.  An alternative choice is to vary the volatility of the system to target the volatility of the S&P 500, whose convexity profile we plot below.

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

This analysis highlights a variety of trade-offs to consider:

  1. What, specifically, are we trying to create convexity against?
  2. Can diversification allow us to increase our notional exposure?
  3. Will diversification be dilutive to our potential convexity?

Perhaps, then, we should consider approaching the problem from another angle: given exposure to managed futures, what would be a better core portfolio to hold?  Given that most managed futures portfolios start from a risk parity core, the simplest answer is likely risk parity.

As an example, we construct a 10% target volatility risk parity index using equity, rate, and commodity contracts.  Below we plot the convexity profile of our managed futures strategy against this risk parity index and see the traditional “smile” emerge.  We also plot the equity curves for the risk parity index, the managed futures index, and a 50/50 blend.  Both the risk parity and managed futures indices have a realized volatility of level of 10.8%; the blended combination drops this volatility to just 7.6%, achieving a maximum drawdown of just -10.1%.

Source: Stevens Analytics and Sharadar.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.  These results do not reflect the returns of any strategy managed by Newfound Research.

Conclusion

Managed futures have historically generated significant gains during left-tail equity events.  These returns, however, are by no means guaranteed.  While trend following is a mechanically convex strategy, the diversified nature of most managed futures programs can potentially dilute equity-crisis-specific returns.

In this research note, we sought to explore this concept by generating a large number of managed futures strategies that varied in the number of contracts traded.  We found that increasing the number of contracts had two primary effects: (1) it reduced realized convexity from a “smile” to a “smirk” (i.e. exhibited less up-side participation with equity markets); and (2) meaningfully increased returns during negative equity markets.

The latter is particularly curious but ultimately the byproduct of two facts.  First, increasing diversification allows for increased notional exposure in the portfolio to achieve the same target volatility level.  Second, during past crises we witnessed a large number of assets trending simultaneously.  Therefore, while increasing the number of contracts reduced notional exposure to S&P 500 futures specifically, the total notional exposure to trades generating positive gains during past crisis events was materially higher.

While the first fact is evergreen, the second may not always be the case.  Therefore, employing managed futures specifically as a strategy to provide offsetting returns during an equity market crisis requires the belief that a sufficient number of other exposures (i.e. equity indices, rates, commodities, and currencies) will be exhibiting meaningful trends at the same time.

Given its diversified nature, it should come as no surprise that managed futures appear to be a natural complement to a risk parity portfolio.

Investors acutely sensitive to significant equity losses – e.g. those in more traditional strategic allocation portfolios – might therefore consider strategies designed more specifically with such environments in mind.  At Newfound, we believe that trend equity strategies are one such solution, as they overlay trend-following techniques directly on equity exposure, seeking to generate the convexity mechanically and not through correlated assets.  When overlaid with U.S. Treasury futures – which have historically provided a “flight-to-safety” premium during equity crises – we believe it is a particularly strong solution.

 


Timing Trend Model Specification with Momentum

A PDF version of this post is available here.

Summary

  • Over the last several years, we have written several research notes demonstrating the potential benefits of diversifying “specification risk.”
  • Specification risk occurs when an investment strategy is overly sensitive to the outcome of a single investment process or parameter choice.
  • Adopting an ensemble approach is akin to creating a virtual fund-of-funds of stylistically similar managers, exhibiting many of the same advantages of traditional multi-manager diversification.
  • In this piece, we briefly explore whether model specification choices can be timed using momentum within the context of a naïve trend strategy.
  • We find little evidence that momentum-based parameter specification leads to meaningful or consistent improvements beyond a naively diversified approach.

Over the last several years, we’ve advocated on numerous occasions for a more holistic view of diversification: one that goes beyond just what we invest in, but also considers how those decisions are made and when they are made.

We believe that this style of thinking can be applied “all the way down” our process.  For example, how-based diversification would advocate for the inclusion of both value and momentum processes, as well as for different approaches to capturing value and momentum.

Unlike correlation-based what diversification, how-based diversification often does little for traditional portfolio risk metrics.  For example, in Is Multi-Manager Diversification Worth It? we demonstrated that within most equity categories, allocating across multiple managers does almost nothing to reduce  portfolio volatility.  It does, however, have a profound impact on the dispersion of terminal wealth that is achieved, often by avoiding manager-specific tail-risks.  In other words, our certainty of achieving a given outcome may be dramatically improved by taking a multi-manager approach.

Ensemble techniques to portfolio construction can be thought of as adopting this same multi-manager approach by creating a set of virtual managers to allocate across.

In late 2018, we wrote two notes that touched upon this:  When Simplicity Met Fragility and What Do Portfolios and Teacups Have in Common?  In both studies we injected a bit of randomness into asset returns to measure the stability of trend-following strategies.  We found that highly simplistic models tended to exhibit significant deviations in results with just slightly modified inputs, suggesting that they are highly fragile.  Increasing diversification across what, how, and when axes led to a significant improvement in outcome stability.

As empirical evidence, we studied the real-time results of the popular Dual Momentum GEM strategy in our piece Fragility Case Study: Dual Momentum GEM, finding that slight deviations in model specification lead to significantly different allocation conclusions and therefore meaningfully different performance results.  This was particularly pronounced over short horizons.

Tying trend-following to option theory, we then demonstrated how an ensemble of trend following models and specifications could be used to increase outcome certainty in Tightening the Uncertain Payout of Trend-Following.

Yet while more diversification appears to make portfolios more consistent in the outcomes they achieve, empirical evidence also suggests that certain specifications can lead to superior results for prolonged periods of time.  For example, slower trend following signals appear to have performed much, much better than fast trend following signals over the last two decades.

One of the benefits of being a quant is that it is easy to create thousands of virtual managers, all of whom may follow the same style (e.g. “trend”) but implement with a different model (e.g. prior total return, price-minus-moving-average, etc) and specification (e.g. 10 month, 200 day, 13 week / 34 week cross, etc).  An ancillary benefit is that it is also easy to re-allocate capital among these virtual managers.

Given this ease, and knowing that certain specifications can go through prolonged periods of out-performance, we might ask: can we time specification choices with momentum?

Timing Trend Specification

In this research note, we will explore whether momentum signals can help us time out specification choices as it relates to a simple long/flat U.S. trend equity strategy.

Using data from the Kenneth French library, our strategy will hold broad U.S. equities when the trend signal is positive and shift to the risk-free asset when trends are negative.  We will develop 1023 different strategies by employing three different models – prior total return, price-minus-moving-average, and dual-moving-average-cross-over – with lookback choices spanning from 20-to-360 days in length.

After constructing the 1023 different strategies, we will then apply a momentum model that ranks the models based upon prior returns and equally-weights our portfolio across the top 10%.  These choices are made daily and implemented with 21 overlapping portfolios to reduce the impact of rebalance timing luck.

It should be noted that because the underlying strategies are only allocating between U.S. equities and a risk-free asset, they can go through prolonged periods where they have identical returns or where more than 10% of models share the highest prior return.  In these cases, we select all models that have returns equal-to-or-greater-than the model identified at the 10th percentile.

Before comparing performance results, we think it is worthwhile to take a quick look under the hood to see whether the momentum-based approach is actually creating meaningful tilts in specification selection.  Below we plot both aggregate model and lookback weights for the 126-day momentum strategy.

Source: Kenneth French Data Library. Calculations by Newfound Research.

We can see that while the model selection remains largely balanced, with the exception of a few periods, the lookback horizon selection is far more volatile.  On average, the strategy preferred intermediate-to-long-term signals (i.e. 181-to-360 day), but we can see intermittent periods where short-term models carried favor.

Did this extra effort generate value, though?  Below we plot the ratio of the momentum strategies’ equity curves versus the naïve diversified approach.

We see little consistency in relative performance and four of the five strategies end up flat-to-worse.  Only the 252-day momentum strategy out-performs by the end of the testing period and this is only due to a stretch of performance from 1950-1964.  In fact, since 1965 the relative performance of the 252-day momentum model has been negative versus the naively diversified approach.

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.

This analysis suggests that naïve, momentum-based specification selection does not appear to have much merit against a diversified approach for our simple trend equity strategy.

The Potential Benefits of Virtual Rebalancing

One potential benefit of an ensemble approach is that rebalancing across virtual managers can generate growth under certain market conditions.  Similar to a strategically rebalanced portfolio, we find that when returns across virtual managers are expected to be similar, consistent rebalancing can harvest excess returns above a buy-and-hold approach.

The trade-off, of course, is that when there is autocorrelation in specification performance, rebalancing creates a drag.   However, given that the evidence above suggests that relative performance between specifications is not persistent, we might expect that continuously rebalancing across our ensemble of virtual managers may actually allow us to harvest returns above and beyond what might be possible with just selecting an individual manager.

Source: Kenneth French Data Library. Calculations by Newfound Research. Past performance is not an indicator of future results. Performance is backtested and hypothetical. Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions.

Conclusion

In this study, we explored whether we could time model specification choices in a simple trend equity strategy using momentum signals.

Testing different lookback horizons of 21-through-378 days, we found little evidence of meaningful persistence in the returns of different model specifications.  In fact, four of the five momentum models we studied actually under-performed a naïve, diversified.  The one model that did out-perform only seemed to do so due to strong performance realized over the 1950-1964 period, actually relatively under-performing ever since.

While this evidence suggests that timing specification with momentum may not be a fruitful approach, it does suggest that the lack of return persistence may benefit diversification for a second reason: rebalancing.  Indeed, barring any belief that one specification would necessarily do better than another, consistently re-pooling and distributing resources through rebalancing may actually lead to the growth-optimal solution.1 This potentially implies an even higher hurdle rate for specification-timers to overcome.

 


 

Global Growth-Trend Timing

This post is available as a PDF download here.

Summary­

  • While trend following may help investors avoid prolonged drawdowns, it is susceptible to whipsaw where false signals cause investors to either buy high and sell low (realizing losses) or sell low and buy high (a missed opportunity).
  • Empirical evidence suggests that using economic data in the United States as a filter of when to employ trend-following – a “growth-trend timing” model – has historically been fruitful.
  • When evaluated in other countries, growth-trend timing has been historically successful in mitigating whipsaw losses without sacrificing the ability to avoid large drawdowns. However, we see mixed results on whether this actually improves upon naïve trend-following.
  • We find that countries that can be influenced by factors originating outside of their borders might not benefit from an introspective economic signal.

We apologize in advance, as this commentary will be fairly graph- and table-heavy.

We have written fairly extensively on the topic of factor-timing in the past, and much of the success has been proven to be both hard to implement and recreate out of sample.

One of the inherent pains of trend following is the existence of whipsaws, or more precisely, the misidentification of perceived market trends, which turn out to be more noise than signal. An article from Philosophical Economics proposed using several economic indicators to tune down the noise that might affect price-driven signals such as trend following.  Generally, this strategy imposed an overlay that turned trend following “on” when the change in the economic indicators were negative year-over-year signaling a higher likelihood of recession, and conversely, adopted a buy-and-hold stance when the economic indicators were not flashing warning lights.

This strategy presents a certain appeal as leading economic indicators may, as their name implies, lead the market for some time until capital preservation is warranted.  Switching to a trend-following approach may allow a strategy to continue to participate in market appreciation while it lasts.  On the other hand, using economic confirmation as a filter may help a strategy avoid the whipsaw costs generated from noisy market dips while positive economic conditions persist.

In an effort to test such a strategy out-of-sample, we took the approach global, hoping to capture a broader cross-section of economic and market environments.

First, we will consider trend following with no timing using the economic indicators.1

Below we plot the equity curves for Australia, Germany, Italy, Japan, Singapore, the United Kingdom, and the United States, alongside a strategy that is long the market when the market is above the trailing twelve-month average (“12 Month average”) and steps to cash when the price is below it.  The ratio between the two is also included to show the relative cumulative performance between the trend strategy and the respective market. An increasing ratio means that the trend following strategy is adding value over buy-and-hold.

Source: MSCI, Global Financial Data.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Through the graphs above, it becomes clear that much of the trend premium is realized by avoiding the large, prolonged bear markets that tend to occur during economic distress.  In between these periods, however, the trend strategy lags the market. It makes sense, then, that a potential improvement to this strategy would be to implement an augmentation that could better distinguish between real price break-outs and those that lead to a whipsaw in the portfolio.

Growth-Trend Timing

For each country, we look at a number of economic indicators, including: corporate earnings growth, employment, housing starts, industrial production, and retail sales growth.2  The strategy then followed the same rules as described above: if the economic indicator in question displays a negative percentage change over the previous twelve-month period, a position is taken in a trend following strategy utilizing a twelve-month moving average signal.  Otherwise, a buy-and-hold position is established.

To ensure that we are not benefitting from look-ahead bias, a lag of three months was imposed on each of the economic indicators, as it would be unrealistic to assume that the economic levels would be known at the end of each month.

Unfortunately, some of the economic data points could not be found for the entire period in which prices are available, though the analysis can still prove beneficial by indicating what economic regimes trend following is benefitted by growth-trend timing, or the potential identification where one indicator may work when another does not.3

In the charts below, we plot the growth-trend timing (referred to as GTT for the remainder of this commentary) for each country utilizing the available signals. The charts represent the relative cumulative performance over the respective country’s market return.  For example, when the lines remain flat, the GTT approach has adopted buy-and-hold exposure and therefore matches the respective market’s returns. Any changes in the ratios are due to the GTT strategy investing in the trend following strategy.

Source: MSCI, Global Financial Data, St. Louis Fed, Bloomberg.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

What we see from the above figures is a mixed bag of results.

The overlay of economic indicators was by far successful in the mitigation of whipsaw losses, as each country reaped the benefits of being primarily long the market during bull markets. As the 12-month moving average strategy tended to slowly give up a portion of the gains realized from severe market environments, the majority of the GTT strategies remained relatively stagnant until the next major correction.

There are some instances, however, where the indicator was late to the economic party.  It is worth remembering that the market is, in theory, a forward-looking measure, and therefore sudden economic shocks may not be captured in economic data as quickly as it is in market returns.  This created cases where the strategy either missed the chance to be out of the market during a correction or was sitting on the sidelines during the subsequent recoveries. Notably, the employment signal in Australia, Italy, Singapore, and the United Kingdom tended to be a poor leading indicator as the strategy tended to be invested longer in the bear markets than the trend strategy.

 

A Candidate for Ensembling

The implicit assumption in the analysis above is that the included indicators behave in similar ways.  For example, by using a twelve-month lookback period for the indicators, we are assuming that each indicator will begin to trend in roughly the same way.

That may not be a particularly fair assumption.  Whereas housing starts and retail sales are generally considered leading indicators, employment (unemployment) rates are normally categorized as lagging indicators. For this reason, it may be more beneficial to use a shorter lookback period so as to pick up on potential problems in the economy as they begin to present themselves.  Further, some signals tend to be more erratic than others, suggesting that a meaningful lookback period for one indicator may not be meaningful for another. With no perfect reason to prefer one lookback over another, we might consider different lookback periods so as to diversify any specification risk that may exist within the strategy.

With the benefit of hindsight, we know that not all recessions occur for the same reasons, so being reliant on one signal that has worked in the past may not be as beneficial in the future. With this in mind, we should consider that all indicators hold some information as to the state of the economy since one indicator may be signaling the all-clear while another may be flashing warning lights.

For the same reason medical professionals take multiple readings to gain insight into the state of the body, we should also consider any available signals to ascertain the health of the economy.

To ensemble this strategy, we will vary the lookbacks from six to eighteen months, while holding the lag at three months, as well as combine the available economic signals for each country.  For the sake of brevity, we will hold the trend-following strategy the same with a twelve-month moving average.

Remember, if the economic signal is negative, it does not mean that we are immediately out of the market: a negative economic signal simply moves the strategy into a trend-following approach. With 5 economic indicators and 13 lookback periods, we have 65 possible strategies for each country. As an example, if 40 of these 65 models were positive and 25 were negative, we would hold 62% in the market and 38% in the trend following strategy.

The resulting performance statistics can be seen in the table below.

Source: MSCI, Global Financial Data, St. Louis Fed, Bloomberg.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

From the table above, we see that there are, again, mixed results. One country that particularly stands out is Italy in that the sign on its return flipped to negative and the drawdown was actually deeper with GTT than with a simple buy-and-hold strategy.

Source: MSCI, Global Financial Data, St. Louis Fed, Bloomberg.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Digging deeper, it appears that the GTT strategy for Italy was actually whipsawed by more than just trend-following. Housing start data for Italy was not readily available until December 2008, so Italy may have been at a relative disadvantage when compared against the other countries.  Since the reliable data we could find begins at the end of 2008 and the majority of the whipsaw losses occur post-Great Financial Crisis, we can run the analysis again, but with housing start data being added in upon its availability.

Source: MSCI, Global Financial Data, St. Louis Fed, Bloomberg.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Adding housing starts in as an indicator did not meaningfully alter the results over the period. One hypothesis is that the indicators included could not fully encapsulate the complex state of Italy’s economy over the period.  Italy has weathered three technical recessions over the past decade, so this could be a regime where the market is looking to sources outside the country for indications of distress or where the economic indicator is not reflective of the pressures driving the market.

Source: MSCI, St. Louis Fed.  Calculations by Newfound Research.  Past performance is not an indicator of future results.  Performance is backtested and hypothetical.  Performance figures are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes.  Performance assumes the reinvestment of all distributions. 

Above, we can see several divergences between the market movement and changes in real GDP. Specifically, in the past decade, we see that the market reacted to information that didn’t materialize in the country’s real GDP. More likely, the market was reacting to regional financial distress driven by debt concerns.

The MSCI Italy index is currently composed of 24 constituents with multinational business operations. Additionally, the index maintains large concentrations in financials, utilities, and energy: 33%, 25%, and 14%, respectively.4  Because of this sector concentration, utilizing the economic indicators may overly focus on the economic health of Italy while ignoring external factors such as energy prices or broader financial distress that could be swaying the market needle.

A parallel explanation could be that the Eurozone is entangled enough that signals could be interfering with each other between countries. Further research could seek to disaggregate signals between the Eurozone and the member-countries, attempting to differentiate between zone, regional, and country signals to ascertain further meaning.

Additionally, economic indicators are influenced by both the private and public sector so this could represent a disconnect between public company health and private company health.

Conclusion

In this commentary, we sought to answer the question, “can we improve trend-following by drawing information from a country’s economy”. It intuitively makes sense that an investor would generally opt for remaining in the market unless there are systemic issues that may lead to market distress.  A strategy that successfully differentiates between market choppiness and periods of potential recession would drastically mitigate any losses incurred from whipsaw, thereby capturing a majority of the equity premium as well as the trend premium.

We find that growth-trend timing has been relatively successful in countries such as the United States, Germany, and Japan.  However, the country that is being analyzed should be considered in light of their specific circumstances.

Peeking under the hood of Italy, it becomes clear that market movements may be influenced by more than a country’s implicit economic health.  In such a case, we should pause and ask ourselves whether a macroeconomic indicator is truly reflective of that country’s economy or if there are other market forces pulling the strings.

 


 

Macro Timing with Trend Following

This post is available for download here.

Summary

  • While it may be tempting to time allocations to active strategies, it is generally best to hold them as long-term allocations.
  • Despite this, some research has shown that there may be certain economic environments where trend following equity strategies are better suited.
  • In this commentary, we replicate this data and find that a broad filter of recessionary periods does indeed show this for certain trend equity strategies but not for the style of trend equity in general.
  • However, further decomposing the business cycle into contractions, recoveries, expansions, and slowdowns using leading economic indicators such as PMI and unemployment does show some promising relationships between the forecasted stage of the business cycle and trend following’s performance relative to buy-and-hold equities.
  • Even if this data is not used to time trend equity strategies, it can be beneficial to investors for setting expectations and providing insight into performance differences.


Systematic active investing strategies are a way to achieve alternative return profiles that are not necessarily present when pursuing standard asset allocation and may therefore play an important role in developing well-diversified portfolios.

But these strategies are best viewed as allocations rather than trades.1 This is a topic we’ve written about a number of times with respect to factor investing over the past several years, citing the importance of weathering short-term pain for long-term gains. For active strategies to outperform, some underperformance is necessary. Or, as we like to say, “no pain, no premium.”

That being said, being tactical in our allocations to active strategies may have some value in certain cases. In one sense, we can view the multi-layered active decisions simply as another active strategy, distinct from the initial one.

An interesting post on Philosophical Economics looked at using a variety of recession indicators (unemployment, earnings growth, industrial production, etc.) as ways to systematically invest in either U.S. equities or a trend following strategy on U.S. equities. If the economic indicator was in a favorable trend, the strategy was 100% invested in equities. If the economic indicator was in an unfavorable trend, the strategy was invested in a trend following strategy applied to equities, holding cash when the market was in a downtrend.

The reasoning behind this strategy is intuitively appealing. Even if a recession indicator flags a likely recession, the market may still have room to run before turning south and warranting capital protection. On the other hand, when the recession indicator was favorable, purely investing in equities avoids some of the whipsaw costs that are inherent in trend following strategies.

In this commentary, we will first look at the general style of trend equity in the context of recessionary and non-recessionary periods and then get a bit more granular to see when trend following has worked historically through the economic cycle of Expansion, Slowdown, Contraction, and Recovery.

Replicating the Data

To get our bearings, we will first attempt to replicate some of the data from the Philosophical Economics post using only the classifications of “recession” and “not-recession”.

Keeping in line with the Philosophical Economics method, we will use whether the economic metric is above or below its 12-month moving average as the recession signal for the next month. We will use market data from the Kenneth French Data Library for the total U.S. stock market returns and the risk-free rate as the cash rate in the equity trend following model.

The following table shows the results of the trend following timing models using the United States ISM Purchasing Managers Index (PMI) and the Unemployment Rate as indicators.

U.S. Equities12mo MA Trend Equity12m MA Trend Timing Model (PMI)12mo MA Trend Timing Model (Unemployment)
Annualized Return11.3%11.1%11.3%12.2%
Annualized Volatility14.7%11.2%11.9%12.4%
Maximum Drawdown50.8%24.4%32.7%30.0%
Sharpe Ratio0.490.620.610.66

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

With the trend timing model, we see an improvement in the absolute returns compared to the trend equity strategy alone. However, this comes at the expense of increasing the volatility and maximum drawdown.

In the case of unemployment, which was the strongest indicator that Philosophical Economics found, there is an improvement in risk-adjusted returns in the timing model.

Still, while there is a benefit, it may not be robust.

If we remove the dependence of the trend following model on a single metric or lookback parameter, the benefit of the macro-timing decreases. Specifically, if we replace our simple 12-month moving average trend equity rule with the ensemble approach utilized in the Newfound Trend Equity Index, we see very different results. This may indicate that one specific variant of trend following did well in this overall model, but the style of trend following might not lend itself well to this application.

U.S. EquitiesNewfound Trend Equity IndexTrend Equity Index Blend (PMI)Trend Equity Index Blend (Unemployment)
Annualized Return11.3%10.7%10.9%10.9%
Annualized Volatility14.7%11.1%11.8%13.5%
Maximum Drawdown50.8%25.8%36.1%36.0%
Sharpe Ratio0.490.590.580.50

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

A more robust trend following model may already provide more upside capture during non-recessionary periods but at the expense of more downside capture during recessions. However, we cannot confidently assert that the lower level of down-capture in the single specification of the trend model is not partially due to luck.

If we desire to more thoroughly evaluate the style of trend following, we must get more granular with the economic cycles.

Breaking Down the Economic Cycle

Moving beyond the simple classification of “recession” and “not-recession”, we can follow MSCI’s methodology, which we used here previously, to classify the economic cycle into four primary states: Expansion, Slowdown, Contraction and Recovery.

We will focus on the 3-month moving average (“MA”) minus the 12-month MA for each indicator we examine according to the decision tree below. In the tree, we use the terms better or worse since lower unemployment rate and higher PMI values signal a stronger economy.

Economic cycle

There is a decent amount of difference in the classifications using these two indicators, with the unemployment indicator signaling more frequent expansions and slowdowns. This should be taken as evidence that economic regimes are difficult to predict.

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

Once each indicator is in each state the transition probabilities are relatively close.

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Past performance is not an indicator of future results.

This agrees with intuition when we consider the cyclical nature of these economic metrics. While not a perfect mathematical relationship, these states generally unfold sequentially without jumps from contractions to expansions or vice versa.

Trend Following in the Economic Cycle

Applying the four-part classification to the economic cycle shows where trend equity outperformed.

PMI IndicatorUnemployment Indicator
U.S. EquitiesTrend EquityU.S. EquitiesTrend Equity
Contraction7.6%10.3%1.0%7.3%
Recovery12.2%9.3%15.4%15.0%
Expansion14.3%14.4%13.9%11.3%
Slowdown7.2%5.4%10.5%8.0%

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

During contraction phases, regardless of indicators, trend equity outperformed buy-and-hold.

For the PMI indicator, trend equity was able to keep up during expansions, but this was not the case with the unemployment indicator. The reverse of this was true for recoveries: trend following was close to keeping up in the periods denoted by the unemployment indicator but not by the PMI indicator.

For both indicators, trend following underperformed during slowdowns.

This may seem contradictory at first, but these may be periods of more whipsaw as markets try to forecast future states. And since slowdowns typically occur after expansions and before contractions (at least in the idealized model), we may have to bear more of this whipsaw risk for the strategy to be adaptable enough to add value during the contraction.

The following two charts show the longest historical slowdowns for each indicator: the PMI indicator was for 11 months in late 2009 through much of 2010 and the unemployment rate indicator was for 16 months in 1984-85.

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index.

In the first slowdown period, the trend equity strategy rode in tandem with equities as they continued to climb and then de-risked when equities declined. Equities quickly rebounded leaving the trend equity strategy underexposed to the rally.

In the second slowdown period, the trend equity strategy was heavily defensive going into the slowdown. This protected capital initially but then caused the strategy to lag once the market began to increase steadily.

The first period illustrates a time when the trend equity strategy was ready to adapt to changing market conditions and was unfortunately whipsawed. The second period illustrates a time when the trend equity strategy was already adapted to a supposedly oncoming contraction that did not materialize.

Using these historical patterns of performance, we can now explore how a strategy that systematically allocates to trend equity strategies might be constructed.

Timing Trend Following with the Economic Cycle

One simple way to apply a systematic timing strategy for shifting between equities and trend following is to only invest in equities when a slowdown is signaled.

The charts below show the returns and risk metrics for models using the PMI and unemployment rate individually and a model that blends the two allocations.

Growth trend timing

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

Source: Quandl and U.S. Bureau of Labor Statistics. Calculations by Newfound Research. Results are hypothetical. Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results. You cannot invest in an index. Data is from Jan 1948 – Sep 2019.

The returns increased slightly in every model relative to buy-and-hold, and the blended model performed consistently high across all metrics.

Blending multiple models generally produces benefits like these shown here, and in an actual implementation, utilizing additional economic indicators may make the strategy even more robust. There may be other ways to boost performance across the economic cycle, and we will explore these ideas in future research.

Conclusion

Should investors rotate in and out of active strategies?

Not in most cases, since the typical drivers are short-term underperformance that is a necessary component of active strategies.

However, there may be opportunities to make allocation tweaks based on the economic cycle.

The historical data suggests that a specification-neutral trend-equity strategy has outperformed buy-and-hold equities during economic contractions for both economic indicators. The performance during recoveries and expansions was mixed across indicators. It kept up with the buy-and-hold strategy during expansions denoted by PMI but not unemployment. This relationship was reversed for recoveries denoted by unemployment. In both models, trend equity has also lagged during economic slowdowns as whipsaw becomes more prevalent.

Based on the most recent PMI data, the current cycle is a contraction, indicating a favorable environment for trend equity under both cycle indicators. However, we should note that December 2018 through March 2019 was also labeled as a contraction according to PMI. Not all models are perfect.

Nevertheless, there may be some evidence that trend following can provide differentiated benefits based on the prevailing economic environment.

While an investor may not use this knowledge to shift around allocations to active trend following strategies, it can still provide insight into performance difference relative to buy-and-hold and set expectations going forward.

Trend Following Active Returns

This post is available as a PDF download here.

Summary­

  • Recent research suggests that equity factors exhibit positive autocorrelation, providing fertile ground for the application of trend-following strategies.
  • In this research note, we ask whether the same techniques can be applied to the active returns of long-only style portfolios.
  • We construct trend-following strategies on the active returns of popular MSCI style indices, including Value, Size, Momentum, Minimum Volatility, and Quality.
  • A naïve, equal-weight portfolio of style trend-following strategies generates an information ratio of 0.57.
  • The interpretation of this result is largely dependent upon an investor’s pre-conceived views of style investing, as the diversified trend-following approach generally under-performs a naïve, equal-weight portfolio of factors except during periods of significant and prolonged factor dislocation.

There have been a number of papers published in the last several years suggesting that positive autocorrelation in factor returns may be exploitable through time-series momentum / trend following.  For example,

  • Ehsani and Linnainmaa (2017; revised 2019) document that “most factors exhibit positive autocorrelation with the average factor earning a monthly return of 2 basis points following a year of losses but 52 basis points following a positive year.”
  • Renz (2018) demonstrates that “risk premiums are significantly larger (lower) following recent uptrends (downtrends) in the underlying risk factor.”
  • Gupta and Kelly (2018; revised 2019) find that, “in general, individual factors can be reliably timed based on their own recent performance.”
  • Babu, Levin, Ooi, Pedersen, and Stamelos (2019) find “strong evidence of time-series momentum” across the 16 long/short equity factors they study.

While this research focuses mostly only long/short equity factors, it suggests that there may be opportunity for long-only style investors to improve their realized results as well.  After all, long-only “smart beta” products can be thought of as simply a market-cap benchmark plus a dollar-neutral long/short portfolio of active bets.

Therefore, calculating the returns due to the active bets taken by the style is a rather trivial exercise: we can simply take the monthly returns of the long-only style index and subtract the returns of the long-only market-capitalization-weighted benchmark.  The difference in returns will necessarily be due to the active bets.1

Below we plot the cumulative active returns for five popular equity styles: Value (MSCI USA Enhanced Value), Size (MSCI USA SMID), Momentum (MSCI USA Momentum), Minimum Volatility (MSCI USA Minimum Volatility), and Quality (MSCI USA Quality).

The active returns of these indices certainly rhyme with, but do not perfectly replicate, their corresponding long/short factor implementations.  For example, while Momentum certainly exhibits strong, negative active returns from 6/2008 to 12/2009, the drawdown is nowhere near as severe as the “crash” that occurred in the pure long/short factor.

This is due to two facts:

  1. The implied short side of the active bets is constrained by how far it can take certain holdings to zero. Therefore, long-only implementations tend to over-allocate towards top-quintile exposures rather than provide a balanced long/short allocation to top- and bottom-quintile exposures.
  2. While the active bets form a long/short portfolio, the notional size of that portfolio is often substantially lower than the academic factor definitions (which, with the exception of betting-against-beta, more mostly assumed to have a notional exposure of 100% per leg). The active bets, on the other hand, have a notional size corresponding to the portfolio’s active share, which frequently hovers between 30-70% for most long-only style portfolios.
  3. The implementation details of the long-only style portfolios and the long/short factor definitions may not perfectly match one another. As we have demonstrated a number of times in past research commentaries, these specification details can often swamp style returns in the short run, leading to meaningful cross-sectional dispersion in same-style performance.

Source: MSCI.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

Source: MSCI; AQR.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

 

Nevertheless, “rhymes but does not replicate” may be sufficient for long-only investors to still benefit from trend-following techniques.

In our test, we will go long the style / short the benchmark (i.e. long active returns) when prior N-month returns are positive and short the style / long the benchmark (i.e. short active returns) when prior N-month returns are negative. Portfolios are formed monthly at the end of each month.  Performance results are reported in the table below for 1, 3, 6, 9, and 12-month lookback periods.

 

Annualized ReturnAnnualized VolatilityInformation RatioMaximum DrawdownSample Size (Months)
1Value1.7%6.1%0.28-15.1%261
Size-0.8%8.2%-0.10-44.4%303
Momentum-0.2%7.5%-0.03-21.3%302
Minimum Volatility-0.1%5.7%-0.01-25.0%375
Quality1.3%3.8%0.35-8.9%302
3Value3.3%6.0%0.55-15.5%261
Size1.1%8.2%0.13-34.5%303
Momentum-0.8%7.5%-0.11-38.0%302
Minimum Volatility0.7%5.7%0.13-19.4%375
Quality0.9%3.8%0.24-10.1%302
6Value2.9%6.0%0.48-21.0%261
Size1.7%8.2%0.20-20.8%303
Momentum0.7%7.5%0.09-28.8%302
Minimum Volatility0.5%5.7%0.09-27.8%375
Quality0.6%3.9%0.16-14.6%302
9Value3.4%6.0%0.57-14.8%261
Size2.0%8.2%0.24-27.1%303
Momentum1.2%7.5%0.16-23.4%302
Minimum Volatility0.9%5.7%0.15-20.8%375
Quality0.3%3.9%0.07-14.7%302
12Value3.2%6.0%0.54-11.2%261
Size1.8%8.2%0.22-29.9%303
Momentum1.9%7.5%0.25-20.0%302
Minimum Volatility1.4%5.7%0.24-17.3%375
Quality1.3%3.8%0.34-11.0%302

Source: MSCI.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

Below we plot the equity curves of the 12-month time-series momentum strategy. We also plot a portfolio that takes a naïve equal-weight position across all five trend-following strategies.  The naïve blend has an annualized return of 2.3%, an annualized volatility of 4.0%, and an information ratio of 0.57.

Source: MSCI.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

This analysis at least appears to provide a glimmer of hope for this idea.  Of course, the analysis comes with several caveats:

  1. We assume that investors can simultaneously generate signals and trade at month end, which may not be feasible for most.
  2. We are analyzing index data, which may be different than the realized results of index-tracking ETFs.
  3. We do not factor in trading costs such as impact, slippage, or commissions.

It is also important to point out that the per-style results vary dramatically.  For example, trend-following on the size style has been in a material drawdown since 2006.  Therefore, attempting to apply time-series momentum onto of a single style to manage style risk may only invite further strategy risk; this approach may be best applied with an ensemble of factors (and, likely, trend signals).

What this commentary has conveniently ignored, however, is that the appropriate benchmark for this approach is not zero.  Rather, a more appropriate benchmark would be the long-only active returns of the styles themselves, as our default starting point is simply holding the styles long-only.

The results, when adjusted for our default of buy-and-hold, is much less convincing.

Source: MSCI.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

What is clear is that the strategy can now only out-perform when the style is under­-performing the benchmark.  When the portfolio invests in the style, our relative return versus the style is flat.

When a diversified trend-following portfolio is compared against a diversified long-only factor portfolio, we see the general hallmarks of a trend-following approach: value-add during periods of sustained drawdowns with decay thereafter.   Trend-following on styles, then, may be more appropriate as a hedge against prolonged style under-performance; but we should expect a cost to that hedge.

Source: MSCI.  Calculations by Newfound Research.  Results are hypothetical.  Results assume the reinvestment of all distributions. Results are gross of all fees, including, but not limited to, manager fees, transaction costs, and taxes. Past performance is not an indicator of future results.  You cannot invest in an index.

For some styles, like Minimum Volatility, this appears to have helped relative performance drawdowns in periods like the dot-com bubble without too much subsequent give-up.  Size, on the other hand, also benefited during the dot-com era, but subsequently suffered from significant trend-following whipsaw.

Conclusion

Recent research has suggested that equity style premia exhibit positive autocorrelation that can be exploited by trend followers.  In this piece, we sought to explore whether this empirical evidence could be exploited by long-only investors by isolating the active returns of long-only style indices.

We found that a naïve 12-month time-series momentum strategy proved moderately effective at generating a timing strategy for switching between factor and benchmark exposure.  Per-style results were fairly dramatic, and trend-following added substantial style risk of its own.  However, diversification proved effective and an equal-weight portfolio of style trend-following strategies offered an information ratio of 0.57.

However, if we are already style proponents, a more relevant benchmark may be a long-only style portfolio.  When our trend-following returns are taken in excess of this benchmark, results deflate dramatically, as the trend-following strategy can now only exploit periods when the style under-performs a market-capitalization-weighted index.  Thus, for investors who already implement long-only styles in their portfolio, a trend-following overlay may serve to hedge periods of prolonged style drawdowns but will likely come with whipsaw cost which may drag down realized factor results.

 


 

Page 2 of 7

Powered by WordPress & Theme by Anders Norén