The Research Library of Newfound Research

Category: Popular

Factor Fimbulwinter

This post is available as a PDF download here.

Summary­

  • Value investing continues to experience a trough of sorrow. In particular, the traditional price-to-book factor has failed to establish new highs since December 2006 and sits in a 25% drawdown.
  • While price-to-book has been the academic measure of choice for 25+ years, many practitioners have begun to question its value (pun intended).
  • We have also witnessed the turning of the tides against the size premium, with many practitioners no longer considering it to be a valid stand-alone anomaly. This comes 35+ years after being first published.
  • With this in mind, we explore the evidence that would be required for us to dismiss other, already established anomalies.  Using past returns to establish prior beliefs, we simulate out forward environments and use Bayesian inference to adjust our beliefs over time, recording how long it would take for us to finally dismiss a factor.
  • We find that for most factors, we would have to live through several careers to finally witness enough evidence to dismiss them outright.
  • Thus, while factors may be established upon a foundation of evidence, their forward use requires a bit of faith.

In Norse mythology, Fimbulvetr (commonly referred to in English as “Fimbulwinter”) is a great and seemingly never-ending winter.  It continues for three seasons – long, horribly cold years that stretch on longer than normal – with no intervening summers.  It is a time of bitterly cold, sunless days where hope is abandoned and discord reigns.

This winter-to-end-all-winters is eventually punctuated by Ragnarok, a series of events leading up to a great battle that results in the ultimate death of the major gods, destruction of the cosmos, and subsequent rebirth of the world.

Investment mythology is littered with Ragnarok-styled blow-ups and we often assume the failure of a strategy will manifest as sudden catastrophe.  In most cases, however, failure may more likely resemble Fimbulwinter: a seemingly never-ending winter in performance with returns blown to-and-fro by the harsh winds of randomness.

Value investors can attest to this.  In particular, the disciples of price-to-book have suffered greatly as of late, with “expensive” stocks having outperformed “cheap” stocks for over a decade.  The academic interpretation of the factor sits nearly 25% belowits prior high-water mark seen in December 2006.

Expectedly, a large number of articles have been written about the death of the value factor.  Some question the factor itself, while others simply argue that price-to-book is a broken implementation.

But are these simply retrospective narratives, driven by a desire to have an explanation for a result that has defied our expectations?  Consider: if price-to-book had exhibited positive returns over the last decade, would we be hearing from nearly as large a number of investors explaining why it is no longer a relevant metric?

To be clear, we believe that many of the arguments proposed for why price-to-book is no longer a relevant metric are quite sound. The team at O’Shaughnessy Asset Management, for example, wrote a particularly compelling piece that explores how changes to accounting rules have led book value to become a less relevant metric in recent decades.1

Nevertheless, we think it is worth taking a step back, considering an alternate course of history, and asking ourselves how it would impact our current thinking.  Often, we look back on history as if it were the obvious course.  “If only we had better prior information,” we say to ourselves, “we would have predicted the path!”2  Rather, we find it more useful to look at the past as just one realized path of many that’s that could have happened, none of which were preordained.  Randomness happens.

With this line of thinking, the poor performance of price-to-book can just as easily be explained by a poor roll of the dice as it can be by a fundamental break in applicability.  In fact, we see several potential truths based upon performance over the last decade:

  1. This is all normal course performance variance for the factor.
  2. The value factor works, but the price-to-book measure itself is broken.
  3. The price-to-book measure is over-crowded in use, and thus the “troughs of sorrow” will need to be deeper than ever to get weak hands to fold and pass the alpha to those with the fortitude to hold.
  4. The value factor never existed in the first place; it was an unfortunate false positive that saturated the investing literature and broad narrative.

The problem at hand is two-fold: (1) the statistical evidence supporting most factors is considerable and (2) the decade-to-decade variance in factor performance is substantial.  Taken together, you run into a situation where a mere decade of underperformance likely cannot undue the previously established significance.  Just as frustrating is the opposite scenario. Consider that these two statements are not mutually exclusive: (1) price-to-book is broken, and (2) price-to-book generates positive excess return over the next decade.

In investing, factor return variance is large enough that the proof is not in the eating of the short-term return pudding.

The small-cap premium is an excellent example of the difficulty in discerning, in real time, the integrity of an established factor.  The anomaly has failed to establish a meaningful new high since it was originally published in 1981.  Only in the last decade – nearly 30 years later – have the tides of the industry finally seemed to turn against it as an established anomaly and potential source of excess return.

Thirty years.

The remaining broadly accepted factors – e.g. value, momentum, carry, defensive, and trend – have all been demonstrated to generate excess risk-adjusted returns across a variety of economic regimes, geographies, and asset classes, creating a great depth of evidence supporting their existence. What evidence, then, would make us abandon faith from the Church of Factors?

To explore this question, we ran a simple experiment for each factor.  Our goal was to estimate how long it would take to determine that a factor was no longer statistically significant.

Our assumption is that the salient features of each factor’s return pattern will remain the same (i.e. autocorrelation, conditional heteroskedasticity, skewness, kurtosis, et cetera), but the forward average annualized return will be zero since the factor no longer “works.”

Towards this end, we ran the following experiment: 

  1. Take the full history for the factor and calculate prior estimates for mean annualized return and standard error of the mean.
  2. De-mean the time-series.
  3. Randomly select a 12-month chunk of returns from the time series and use the data to perform a Bayesian update to our mean annualized return.
  4. Repeat step 3 until the annualized return is no longer statistically non-zero at a 99% confidence threshold.

For each factor, we ran this test 10,000 times, creating a distribution that tells us how many years into the future we would have to wait until we were certain, from a statistical perspective, that the factor is no longer significant.

Sixty-seven years.

Based upon this experience, sixty-seven years is median number of years we will have to wait until we officially declare price-to-book (“HML,” as it is known in the literature) to be dead.3  At the risk of being morbid, we’re far more likely to die before the industry finally sticks a fork in price-to-book.

We perform this experiment for a number of other factors – including size (“SMB” – “small-minus-big”), quality (“QMJ” – “quality-minus-junk”), low-volatility (“BAB” – “betting-against-beta”), and momentum (“UMD” – “up-minus-down”) – and see much the same result.  It will take decades before sufficient evidence mounts to dethrone these factors.

HMLSMB4QMJBABUMD
Median Years-until-Failure6743132284339

 

Now, it is worth pointing out that these figures for a factor like momentum (“UMD”) might be a bit skewed due to the design of the test.  If we examine the long-run returns, we see a fairly docile return profile punctuated by sudden and significant drawdowns (often called “momentum crashes”).

Since a large proportion of the cumulative losses are contained in these short but pronounced drawdown periods, demeaning the time-series ultimately means that the majority of 12-month periods actually exhibit positive returns.  In other words, by selecting random 12-month samples, we actually expect a high frequency of those samples to have a positive return.

For example, using this process, 49.1%, 47.6%, 46.7%, 48.8% of rolling 12-month periods are positive for HML, SMB, QMJ, and BAB factors respectively.  For UMD, that number is 54.7%.  Furthermore, if you drop the worst 5% of rolling 12-month periods for UMD, the average positive period is 1.4x larger than the average negative period.  Taken together, not only are you more likely to select a positive 12-month period, but those positive periods are, on average, 1.4x larger than the negative periods you will pick, except for the rare (<5%) cases.

The process of the test was selected to incorporate the salient features of each factor.  However, in the case of momentum, it may lead to somewhat outlandish results.

Conclusion

While an evidence-based investor should be swayed by the weight of the data, the simple fact is that most factors are so well established that the majority of current practitioners will likely go our entire careers without experiencing evidence substantial enough to dismiss any of the anomalies.

Therefore, in many ways, there is a certain faith required to use them going forward. Yes, these are ideas and concepts derived from the data.  Yes, we have done our best to test their robustness out-of-sample across time, geographies, and asset classes.  Yet we must also admit that there is a non-zero probability, however small it is, that these are false positives: a fact we may not have sufficient evidence to address until several decades hence.

And so a bit of humility is warranted.  Factors will not suddenly stand up and declare themselves broken.  And those that are broken will still appear to work from time-to-time.

Indeed, the death of a factor will be more Fimulwinter than Ragnarok: not so violent to be the end of days, but enough to cause pain and frustration among investors.

 

Addendum

We have received a large number of inbound notes about this commentary, which fall upon two primary lines of questions.  We want to address these points.

How were the tests impacted by the Bayesian inference process?

The results of the tests within this commentary are rather astounding.  We did seek to address some of the potential flaws of the methodology we employed, but by-in-large we feel the overarching conclusion remains on a solid foundation.

While we only presented the results of the Bayesian inference approach in this commentary, as a check we actually tested two other approaches:

  1. A Bayesian inference approach assuming that forward returns would be a random walk with constant variance (based upon historical variance) and zero mean.
  2. Forward returns were simulated using the same bootstrap approach, but the factor was being discovered for the first time and the entire history was being evaluated for its significance.

The two tests were in effort to isolate the effects of the different components of our test.

What we found was that while the reported figures changed, the overall  magnitude did not.  In other words, the median death-date of HML may not have been 67 years, but the order of magnitude remained much the same: decades.

Stepping back, these results were somewhat a foregone conclusion.  We would not expect an effect that has been determined to be statistically significant over a hundred year period to unravel in a few years.  Furthermore, we would expect a number of scenarios that continue to bolster the statistical strength just due to randomness alone.

Why are we defending price-to-book?

The point of this commentary was not to defend price-to-book as a measure.  Rather, it was to bring up a larger point.

As a community, quantitative investors often leverage statistical significance as a defense for the way we invest.

We think that is a good thing.  We should look at the weight of the evidence.  We should be data driven.  We should try to find ideas that have proven to be robust over decades of time and when applied in different markets or with different asset classes.  We should want to find strategies that are robust to small changes in parameterization.

Many quants would argue (including us among them), however, that there also needs to be a why.  Why does this factor work?  Without the why, we run the risk of glorified data mining.  With the why, we can choose for ourselves whether we believe the effect will continue going forward.

Of course, there is nothing that prevents the why from being pure narrative fallacy.  Perhaps we have simply weaved a story into a pattern of facts.

With price-to-book, one might argue we have done the exact opposite.  The effect, technically, remains statistically significant and yet plenty of ink has been spilled as to why it shouldn’t work in the future.

The question we must answer, then, is, “when does statistically significant apply and when does it not?”  How can we use it as a justification in one place and completely ignore it in others?

Furthermore, if we are going to rely on hundreds of years of data to establish significance, how can we determine when something is “broken” if the statistical evidence does not support it?

Price-to-book may very well be broken.  But that is not the point of this commentary.  The point is simply that the same tools we use to establish and defend factors may prevent us from tearing them down.

 

Two Centuries of Momentum

This post is available as a PDF download here.

A momentum-based investing approach can be confusing to investors who are often told that “chasing performance” is a massive mistake and “timing the market” is impossible.

Yet as a systematized strategy, momentum sits upon nearly a quarter century of positive academic evidence and a century of successful empirical results.

Our firm, Newfound Research, was founded in August 2008 to offer research derived from our volatility-adjusted momentum models.  Today, we provide tactically risk-managed investment portfolios using those same models.

Momentum, and particularly time-series momentum, has been in our DNA since day one.

In this Foundational Series piece, we want to explore momentum’s rich history and the academic evidence demonstrating its robustness across asset classes, geographies, and market cycles.

1. What is momentum?

Momentum is a system of investing that buys and sells based upon recent returns.  Momentum investors buy outperforming securities and avoid – or sell short – underperforming ones.

The notion is closely tied to physics.  In physics, momentum is the product of the mass and velocity of an object.  For example, a heavy truck moving at a high speed has large momentum.  To stop the truck, we must apply either a large or a prolonged force against it.

Momentum investors apply a similar notion.  They assume outperforming securities will continue to outperform in absence of significant headwinds.

 

2. The Two Faces & Many Names of Momentum

2.1 Relative Momentum

The phenomenon of relative momentum is also called cross-sectional momentum and relative strength.

Relative momentum investors compare securities against each other’s performance.  They favor buying outperforming securities and avoiding – or short-selling – underperforming securities.

Long-only relative momentum investors rotate between a subset of holdings within their investable universe. For example, a simple long-only relative strength system example is “best N of.”  At rebalance, this system sells its current holdings and buys the top N performing securities of a basket. In doing so, the strategy seeks to align the portfolio with the best performing securities in hopes they continue to outperform.

2.2 Absolute Momentum

Absolute momentum is also referred to as time-series momentum or trend following.

Absolute momentum investors compare a security against its own historical performance.  The system buys positive returning securities and avoids, or sells short, negative returning securities.

The primary difference is that relative momentum makes no distinction about return direction. If all securities are losing value, relative momentum will seek to invest in those assets that are going down least. Absolute momentum will seek to avoid negative returning assets.

 

3. A Brief History of Momentum

3.1 Early Practitioners

Momentum is one of Wall Street’s oldest investment strategies.

In 1838, James Grant published The Great Metroplis, Volume 2. Within, he spoke of David Ricardo, an English political economist who was active in the London markets in the late 1700s and early 1800s. Ricardo amassed a large fortune trading both bonds and stocks.

According to Grant, Ricardo’s success was attributed to three golden rules:

As I have mentioned the name of Mr. Ricardo, I may observe that he amassed his immense fortune by a scrupulous attention to what he called his own three golden rules, the observance of which he used to press on his private friends. These were, “Never refuse an option* when you can get it,”—”Cut short your losses,”—”Let your profits run on.” By cutting short one’s losses, Mr. Ricardo meant that when a member had made a purchase of stock, and prices were falling, he ought to resell immediately. And by letting one’s profits run on he meant, that when a member possessed stock, and prices were raising, he ought not to sell until prices had reached their highest, and were beginning again to fall. These are, indeed, golden rules, and may be applied with advantage to innumerable other transactions than those connected with the Stock Exchange.

The rules “cut short your losses” and “let your profits run on” are foundational philosophies of momentum.

Following in Ricardo’s footsteps are some of Wall Street’s greatest legends who implemented momentum and trend-following techniques.

Charles H. Dow (1851 – 1902) was the founder and first editor of the Wall Street Journal as well as the co-founder of Dow Jones and Company. In his Wall Street Journal column, he published his market trend analysis, which eventually developed into a body of research called Dow theory. Dow theory primarily focuses on the identification of trends as being the key signal for investing.

Jesse Livermore (1877 – 1940) was a stock market speculator in the early 1900s who famously made – and subsequently lost – two massive fortunes during the market panic of 1907 and crash of 1929.  He is attributed (by Edwin Lefèvre, in Reminiscences of a Stock Operator) to saying,

[T]he big money was not in the individual fluctuations but in the main movements … sizing up the entire market and its trend.

Livermore claimed that his lack of adherence to his own rules was the main reason he lost his wealth.

In the same era of Livermore, Richard Wyckoff (1873 – 1934) noted that stocks tended to trend together. Thus he focused on entering long positions only when the broad market was trending up.  When the market was in decline, he focused on shorting.  He also emphasized the placement of stop-losses to help control risk.

He was personally so successful with his techniques, he eventually owned nine and a half acres in the Hamptons.

Starting in the 1930s, George Chestnutt successfully ran the American Investors Fund for nearly 30 years using relative strength techniques. He also published market letters with stock and industry group rankings based on his methods.  He wrote,

[I]t is better to buy the leaders and leave the laggards alone. In the market, as in many other phases of life, ‘the strong get stronger, and the weak get weaker.’

In the late 1940s and early 1950s, Richard Donchian developed a rules based technical system that became the foundation for his firm Futures, Inc.  Futures, Inc. was one of the first publicly held commodity funds.  The investment philosophy was based upon Donchian’s belief that commodity prices moved in long, sweeping bull and bear markets.  Using moving averages, Donchian built one of the first systematic trend-following methods, earning him the title of the father of trend-following.

In the late 1950s, Nicholas Darvas (1920 – 1977), trained economist and touring dancer, invented “BOX theory.”  He modeled stock prices as a series of boxes.  If a stock price remained in a box, he waited.  As a stock price broke out of a box to new highs, he bought and placed a tight stop loss.  He is quoted as saying, 

I keep out in a bear market and leave such exceptional stocks to those who don’t mind risking their money against the market trend.

Also during the 1950s and 1960s was Jack Dreyfus, who Barron’s named the second most significant money manager of the last century. From 1953 to 1964, his Dreyfus Fund returned 604% compared to 346% for the Dow index. Studies performed by William O’Neil showed that Dreyfus tended to buy stocks making new 52-week highs. It wouldn’t be until 2004 that academic studies would confirm this method of investing.

Richard Driehaus took the momentum torch during the 1980s. In his interview in Jack Schwager’s The New Market Wizards, he said he believed that money was made buying high and selling higher.

That means buying stocks that have already had good moves and have high relative strength – that is, stocks in demand by other investors. I would much rather invest in a stock that’s increasing in price and take the risk that it may begin to decline than invest in a stock that’s already in a decline and try to guess when it will turn around.

3.2 Earliest Academic Studies

In 1933, Alfred Cowles III and Herbert Jones released a research paper titled Some A Posteriori Probabilities in Stock Market Action. Within it they specifically focused on “inertia” at the “microscopic” – or stock – level.

They focused on counting the ratio of sequences – times when positive returns were followed by positive returns, or negative returns were followed by negative returns – to reversals – times when positive returns were followed by negative returns, and vice versa.

Their results:

It was found that, for every series with intervals between observations of from 20 minutes up to and including 3 years, the sequences out-numbered the reversals. For example, in the case of the monthly series from 1835 to 1935, a total of 1200 observations, there were 748 sequences and 450 reversals. That is, the probability appeared to be .625 that, if the market had risen in a given month, it would rise in the succeeding month, or, if it had fallen, that it would continue to decline for another month. The standard deviation for such a long series constructed by random penny tossing would be 17.3; therefore the deviation of 149 from the expected value of 599 is in excess of eight times the standard deviation. The probability of obtaining such a result in a penny-tossing series is infinitesimal.

Despite the success of their research on the statistical significance of sequences, the next academic study on momentum was not released for 30 years.

In 1967, Robert Levy published Relative Strength as a Criterion for Investment Selection. Levy found that there was “good correlation between past performance groups and future … performance groups” over 26-week periods. He states:

[…] the [26-week] average ranks and ratios clearly support the concept of continuation of relative strength. The stocks which historically were among the 10 per cent strongest (lowest ranked) appreciated in price by an average of 9.6 per cent over a 26-week future period. On the other hand, the stocks which historically were among the 10 per cent weakest (highest ranked) appreciated in price an average of only 2.9 per cent over a 26-week future period.

Unfortunately, the scope of the study was limited. The period used in the analysis was only from 1960 to 1965. Thus, of the 26-week periods tested, only 8 were independent. In Levy’s words, “the results were extensively intercorrelated; and the use of standard statistical measures becomes suspect.” Therefore, Levy omitted these statistics.

Despite its promise, momentum research went dark for the next 25 years.

4. The Dark Days of Momentum Research

Despite the success of practitioners and promising results of early studies, momentum would go largely ignored by academics until the 1990s.

Exactly why is unknown, but we have a theory: fundamental investing, modern portfolio theory, and the efficient market hypothesis.

4.1 The Rise of Fundamental Investing

In 1934, Benjamin Graham and David Dodd published Security Analysis. Later, in 1949, they published The Intelligent Investor. In these tomes, they outline their methods for successful investing.

For Graham and Dodd, a purchase of stock was a purchase of partial ownership of a business. Therefore, it was important that investors evaluate the financial state of the underlying business they were buying.

They also defined a strong delineation between investing and speculating. To quote,

An investment operation is one which, upon thorough analysis, promises safety of principal and an adequate return. Operations not meeting these requirements are speculative.

Speculative was a pejorative term. Even the title of The Intelligent Investor implied that any investors not performing security analysis were not intelligent.

The intelligent investor began her process by computing a firm’s intrinsic value. In other words, “what is the business truly worth?” This value was either objectively right or wrong based on the investor’s analysis. Whether the market agreed or not was irrelevant.

Once an intrinsic value was determined, Graham and Dodd advocated investors buy with a margin of safety. This meant waiting for the market to offer stock prices at a deep discount to intrinsic value.

These methods of analysis became the foundation of value investing.

To disciples of Graham and Dodd, momentum is speculative nonsense. To quote Warren Buffett in The Superinvestors of Graham-and-Doddsville:

I always find it extraordinary that so many studies are made of price and volume behavior, the stuff of chartists. Can you imagine buying an entire business simply because the price of the business had been marked up substantially last week and the week before?

4.2 Modern Portfolio Theory and the Efficient Market Hypothesis

In his 1952 article “Portfolio Selection,” Harry Markowitz outlined the foundations of Modern Portfolio Theory (MPT). The biggest breakthrough of MPT was that it provided a mathematical formulation for diversification.

While the concept of diversification has existed since pre-Biblical eras, it had never before been quantified. With MPT, practitioners could now derive portfolios that optimally balanced risk and reward. For example, by combining assets together, Markowitz created the efficient frontier: those combinations for which there is the lowest risk for a given level of expected return.

By introducing a risk-free asset, the expected return of any portfolio constructed can be linearly changed by varying the allocation to the risk-free asset. In a graph like the one on the left, this can be visualized by constructing a line that passes through the risk-free asset and the risky portfolio (called a Capital Allocation Line or CAL). The CAL that is tangent to the efficient frontier is called the capital market line (CML). The point of tangency along the efficient frontier is the portfolio with the highest Sharpe ratio (excess expected return divided by volatility).

According to MPT, in which all investors seek to maximize their Sharpe ratio, an investor should only hold a mixture of this portfolio and the risk free asset. Increasing the allocation to the risk-free asset decreases risk while introducing leverage increases risk.

The fact that any investor should only hold one portfolio has a very important implication: given all the assets available in the market, all investors should hold, in equal relative proportion, the same portfolio of global asset classes. Additionally, if all investors are holding the same mix of assets, in market equilibrium, the prices of asset classes – and therefore their expected returns – must adjust such that the allocation ratios of the assets in the tangency portfolio will match the ratio in which risky assets are supplied to the market.

Holding anything but a combination of the tangency portfolio and the risk-free asset is considered sub-optimal.

From this foundation, concepts for the Capital Asset Pricing Model (CAPM) are derived. CAPM was introduced independently by Jack Treynor, William Sharpe, John Lintner, and Jan Mossin from 1961-1966.

CAPM defines a “single-factor model” for pricing securities. The expected return of a security is defined in relation to a risk-free rate, the security’s “systematic” risk (sensitivity to the tangency portfolio), and the expected market return. All other potentially influencing factors are considered to be superfluous.

While its origins trace back to the 1800s, the efficient market hypothesis (EMH) was officially developed by Eugene Fama in his 1962 Ph.D. thesis.

EMH states that stock prices reflect all known and relevant information and always trade at fair value. If stocks could not trade above or below fair value, investors would never be able to buy them at discounts or sell them at premiums. Therefore, “beating the market” on a risk-adjusted basis is impossible.

Technically, MPT and EMH are independent theories. MPT tells us we want to behave optimally, and gives us a framework to do so. EMH tells us that even optimal behavior will not generate any return in excess of returns predicted by asset pricing models like CAPM.

Markowitz, Fama, and Sharpe all went on to win Nobel prizes for their work.

4.3 Growing Skepticism Towards Technical Analysis

Technical analysis is a category of investing methods that use past market data – primarily price and volume – to make forward forecasts.

As a category, technical analysis is quite broad. Some technicians look for defined patterns in price charts. Others look for lines of support or resistance. A variety of indicators may be calculated and used. Some technicians follow specific techniques – like Dow theory or Elliot Wave theory.

Unfortunately, the broad nature of technical analysis makes it difficult to evaluate academically. Methods vary widely and different technical analysts can make contradictory predictions using the same data.

Thus, during the rise of EMH through the 1960s and 1970s, technical analysis was largely dismissed by academics.

Since momentum relies only on past prices, and many practitioners used tools like moving averages to identify trends, it was categorized as a form of technical analysis.  As academics dismissed the field, momentum went overlooked.

4.4 But Value Research Went On

Despite CAPM, EMH, and growing skepticism towards technical analysis, academic research for fundamental investing continued. Focus was especially strong on value investing.

For example, in 1977, S. Basu authored a comprehensive study on value investing, titled Investment Performance of Common Stocks in Relation to their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis. Within, Basu finds that the return relationship strictly increases for stocks sorted on their price-earnings ratio. Put more simply, cheap stocks outperform expensive ones.

Unfortunately, in many of these studies, the opposite of value was labeled growth or glamor. This became synonymous with high flying, over-priced stocks. Of course, not value is not the same as growth. And not value is certainly not the same as momentum. It is entirely possible that a stock can be in the middle of a positive trend, yet still be undervalued.  Nevertheless, it is easy to see how relatively outperforming and over-priced may be conflated.

It is possible that the success of value research in demonstrating the success of buying cheap stocks dampened the enthusiasm for momentum research.

5. The Return of Momentum

Fortunately, decades of value-based evidence against market efficiency finally piled up.

In February 1993, Eugene Fama and Kenneth French released Common Risk Factors in the Returns on Stocks and Bonds. Fama and French extended the single-factor model of CAPM into a three-factor model. Beyond the “market factor,” factors for “value” and “size” were added, acknowledging these distinct drivers of return.

Momentum was still nowhere to be found.

But a mere month later, Narasimhan Jegadeesh and Sheridan Titman published their seminal work on momentum, titled Returns to Buying Winners and Selling Losers: Implication for Stock Market Efficiency. Within they demonstrated:

Strategies which buy stocks that have performed well in the past and sell stocks that have performed poorly in the past generate significant positive returns over 3- to 12-month holding periods.

The results of the paper could not be explained by systematic risk or delayed reactions to other common factors, echoing the results of Cowles and Jones some 60 years prior.

In 1996, Fama and French authored Multifactor Explanations of Asset Pricing Anomalies. Armed with their new three-factor model, they explored whether recently discovered market phenomena – including Jegadeesh and Titman’s momentum – could be rationally explained away.

While most anomalies disappeared under scrutiny, the momentum results remained robust. In fact, in the paper Fama and French admitted that,

“[momentum is the] main embarrassment of the three-factor model.”

6. The Overwhelming Evidence for Momentum

With its rediscovery and robustness against prevailing rational pricing models, momentum research exploded over the next two decades. It was applied across asset classes, geographies, and time periods. In chronological order:

Asness, Liew, and Stevens (1997) shows that momentum investing is a profitable strategy for country indices.

Carhart (1997) finds that portfolios of mutual funds, constructed by sorting on trailing one-year returns, decrease in monthly excess return nearly monotonically, inline with momentum expectations.

Rouwenhorst (1998) demonstrates that stocks in international equity markets exhibit medium-term return continuations. The study covered stocks from Austria, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom.

LeBaron (1999) finds that a simple momentum model creates unusually large profits in foreign exchange series.

Moskowitz and Grinblatt (1999) finds evidence for a strong and persistent industry momentum effect.

Rouwenhorst (1999), in a study of 1700 firms across 20 countries, demonstrates that emerging market stocks exhibit momentum.

Liew and Vassalou (2000) shows that momentum returns are significantly positive in foreign developed countries but there is little evidence to explain them by economic developments.

Griffin, Ji, and Martin (2003) demonstrates momentum’s robustness, finding it to be large and statistically reliable in periods of both negative and positive economic growth. The study finds no evidence for macroeconomic or risk-based explanations to momentum returns.

Erb and Harvey (2006) shows evidence of success for momentum investing in commodity futures.

Gorton, Hayashi, and Rouwenhorst (2008) extends momentum research on commodities, confirming its existence in futures but also identifying its existence in spot prices.

Jostova, Niklova Philopov, and Stahel (2012) shows that momentum profits are significant for non-investment grade corporate bonds.

Luu and Yu (2012) identifies that for liquid fixed-income assets, such as government bonds, momentum strategies may provide a good risk-return trade-off and a hedge for credit exposure.

7. Academic Explanations for Momentum

While academia has accepted momentum as a distinct driver of return premia in many asset classes around the world, the root cause is still debated.

So far, the theory for rational markets has failed to account for momentum’s significant and robust returns.  It is not correlated with macroeconomic variables and does not seem to reflect exposure to other known risk factors.

But there are several hypotheses that might explain how irrational behavior may lead to momentum.

7.1 The Behavioral Thesis

The most commonly accepted argument for why momentum exists and persists comes from behavioral finance. Behavioral finance is a field that seeks to link psychological theory with economics and finance to explain irrational decisions.

Some of the popular behavioral finance explanations for momentum include:

Herding: Also known as the “bandwagon effect,” herding is the tendency for individuals to mimic the actions of a larger group.

Anchoring Bias: The tendency to rely too heavily on the first piece of information received.

Confirmation Bias: The tendency to ignore information contradictory to prior beliefs.

Disposition Effect: Investors tend to sell winners too early and hold on to losers too long. This occurs because investors like to realize their gains but not their losses, hoping to “make back” what has been lost.

Together, these biases cause investors to either under- or over-react to information, causing pricing inefficiencies and irrational behavior.

7.1.1 Cumulative Advantage & Momentum Beyond Markets

There is strong evidence for momentum being a behavioral and social phenomenon beyond stock markets.

Matthew Salganik, Peter Dodds, and Duncan Watts ran a 14,000 participant, web-based study designed to establish independence of taste and preference in music.

Participants were asked to explore, listen to, and rate music.  One group of participants would be able to see how many times a song was downloaded and how other participants rated it; the other group would not be able to see downloads or ratings.  The group that could see the number of downloads (“social influence”) was then sub-divided into 8 distinct, random groups where members of each sub-group could only see the download and ratings statistics of their sub-group peers.

The hypothesis of the study was that “good music” should garner the same amount of market share regardless of the existence of social influence: hits should be hits.  Secondly, the same hits should be hits across all independent social influence groups.

What the study found was dramatically different.  Each social-influence group had its own hit songs, and those songs commanded a much larger market share of downloads than songs did in the socially-independent group.

Introducing social-influence did two things: it made hits bigger and it made hits more unpredictable.  The authors called this effect “cumulative advantage.”  The consequences are profound.  To quote an article in the New York Times by Watts,

It’s a simple result to state, but it has a surprisingly deep consequence. Because the long-run success of a song depends so sensitively on the decisions of a few early-arriving individuals, whose choices are subsequently amplified and eventually locked in by the cumulative-advantage process, and because the particular individuals who play this important role are chosen randomly and may make different decisions from one moment to the next, the resulting unpredictability is inherent to the nature of the market. It cannot be eliminated either by accumulating more information — about people or songs — or by developing fancier prediction algorithms, any more than you can repeatedly roll sixes no matter how carefully you try to throw the die.

7.2 The Limits to Arbitrage Thesis

EMH assumes that any mis-pricing in public markets will be immediately arbitraged away by rational market participants. The limits to arbitrage theory recognizes that there are often restrictions – both regulatory and capital based – that may limit rational traders from fully arbitraging away these price inefficiencies.

In support of this thesis is Chabot, Ghysels, and Jagannathan (2009), which finds that when arbitrage capital is in short supply, momentum cycles last longer.

Similarly, those investors bringing good news to the market may lack the capital to take full advantage of that information. So if there has been good news in the past, there may be good news not yet incorporated into the price.

7.3 The Rational Inattention Thesis

Humans possess a finite capacity to process the large amounts of information they are confronted with. Time is a scarce resource for decision makers.

The rational inattention theory argues that some information may be evaluated less carefully, or even outright ignored. Or, alternatively, it may be optimal for investors to obtain news with limited frequency or limited accuracy. This can cause investors to over- or under-invest and could cause the persistence of trends.

Chen and Yu (2014) found that portfolios constructed from stocks “more likely to grab attention” based on visual patterns induces investor over-reaction. They provide evidence that momentum continuation is induced by visually-based psychological biases.

8. Advances in Cross-Sectional Research

Much like there are many ways to identify value, there are many ways to identify momentum. Recent research has identified methods that may improve upon traditional total return momentum.

52-Week Highs: Hwang and George (2004) shows that nearness to a 52-week high price dominates and improves upon the forecasting power of past returns (i.e. momentum). Perhaps most interestingly, future returns forecast using a 52-week high do not mean-revert in the long run, like traditional momentum.

Liu, Liu, and Ma (2010) tests the 52-week high strategy in 20 international markets and finds that it is profitable in 18 and significant in 10.

Residual Momentum: Using a universe of domestic equities, covering the period of January 1926 to December 2009, Blitz, Huij, and Martens (2009) decomposes stock returns using the Fama-French three-factor model. Returns unexplained by the market, value, and size factors are considered to be residual. The study finds that momentum strategies built from residual returns exhibit risk-adjusted profits that are twice as large as those associated with total return momentum.

Idiosyncratic Momentum: Similar to Blitz, Huij, and Martens, Chaves (2012) uses the CAPM model to correct stocks for market returns and identify idiosyncratic returns. Idiosyncratic momentum is found to work better than momentum in a sample of 21 developed countries. Perhaps most importantly, idiosyncratic momentum is successful in Japan, where most traditional momentum strategies have failed.

9. Using Momentum to Manage Risk

While most research in the late 1990s and early 2000s focused on relative momentum, research after 2008 has been heavily focused on time-series momentum for its risk-mitigating and diversification properties.

Some of the earliest, most popular research was done by Faber (2006), in which a simple price-minus-moving-average approach was used to drive a portfolio of U.S. equities, foreign developed equities, commodities, U.S. REITs, and U.S. government bonds. The resulting portfolio demonstrates “equity-like returns with bond-like volatility.”

Hurst, Ooi, and Pedersen (2010) identifies that trend-following, or time-series momentum, is a significant component of returns for managed futures strategies. In doing so, the research demonstrates the consistency of trend-following approaches in generating returns in both bull and bear markets.

Going beyond managed futures specifically, Moskowitz, Ooi, Hua, and Pedersen (2011) documents significant time-series momentum in equity index, currency, commodity, and bond futures covering 58 liquid instruments over a 25-year period.

Perhaps some of the most conclusive evidence comes from Hurst, Ooi, Pedersen (2012), which explores time-series momentum going back to 1903 and through 2011.

The study constructs a portfolio of an equal-weight combination of 1-month, 3-month, and 12-month time-series momentum strategies for 59 markets across 4 major asset classes, including commodities, equity indices, and currency pairs. The approach is consistently profitable across decades. The research also shows that incorporating a time-series momentum approach into a traditional 60/40 stock/bond portfolio increases returns, reduces volatility, and reduces maximum drawdown.

Finally, Lempérière, Deremble, Seager, Potters, and Bouchard (2014) extends the tests even further, using both futures and spot prices to go back to 1800 for commodity and stock indices. It finds that excess returns driven by trend-following is both significant and stable across time and asset classes.

10. Evidence & Advances in Time-Series Momentum

While the evidence for time-series momentum was significantly advanced by the papers and teams cited above, there were other, more focused contributions throughout the years that helped establish it in more specific asset classes.

Wilcox and Crittenden (2005) demonstrates that buying stocks when they make new 52-week highs and selling after a prescribed stop-loss is broken materially outperforms the S&P 500 even after accounting for trading slippage.

ap Gwilym, Clare, Seaton, and Thomas (2009) explores whether trend-following can be used as an allocation tool for international equity markets. Similar to Faber (2006), it utilizes a 10-month price-minus-moving-average model. Such an approach delivers a similar compound annual growth rate to buy and hold, but with significantly lower volatility, increasing the Sharpe ratio from 0.41 to 0.75.

Szakmary, Shen, and Sharma (2010) explores trend-following strategies on commodity futures markets covering 48 years and 28 markets. After deducting reasonable transaction costs, it finds that both a dual moving-average-double-crossover strategy and a channel strategy yield significant profit over the full sample period.

Antonacci (2012) explores a global tactical asset allocation approach utilizing both relative and absolute momentum techniques in an approach called “dual momentum.” Dual momentum increases annualized return, reduces volatility, and reduces maximum drawdown for equities, high yield & credit bonds, equity & mortgage REITs, and gold & treasury bonds.

Dudler, Gmuer, and Malamud (2015) demonstrates that risk-adjusted time series momentum – returns normalized by volatility – outperforms time series momentum on a universe of 64 liquid futures contracts for almost all combinations of holdings and look-back periods.

Levine and Pedersen (2015) uses smoothed past prices and smoothed current prices in their calculation of time-series momentum to reduce random noise in data that might occur from focusing on a single past or current price.

Clare, Seaton, Smith and Thomas (2014) finds that trend following “is observed to be a very effective strategy over the study period delivering superior risk-adjusted returns across a range of size categories in both developed and emerging markets.

11. Unifying Momentum & Technical Analysis

Despite their similarities, trend-following moving average rules are often still considered to be technical trading rules versus the quantitative approach of time-series momentum. Perhaps the biggest difference is that the trend-following camp tended to focus on prices while the momentum camp focused on returns.

Momentum - Bruder Dao Richard and RoncalliHowever, research over the last half-decade actually shows that they are highly related strategies.

Bruder, Dao, Richard, and Roncalli (2011) unites moving-average-double-crossover strategies and time-series momentum by showing that cross-overs were really just an alternative weighting scheme for returns in time-series momentum. To quote,

The weighting of each return … forms a triangle, and the biggest weighting is given at the horizon of the smallest moving average. Therefore, depending on the horizon n2 of the shortest moving average, the indicator can be focused toward the current trend (if n2 is small) or toward past trends (if n2 is as large as n1/2 for instance).

We can see, above, this effect in play.  When n2 << n1 (e.g. n2=10, n1=100), returns are heavily back-weighted in the calculation.  As n2 approaches half of n1, we can see that returns are most heavily weighted at the middle point.

Marshall, Nguyen and Visaltanachoti (2012) proves that time-series momentum is related to moving-average-change-in-direction. In fact, time-series momentum signals will not occur until the moving average changes direction.  Therefore, signals from a price-minus-moving-average strategy are likely to occur before a change in signal from time-series momentum.

Levine and Pedersen (2015) shows that time-series momentum and moving average cross-overs are highly related. It also find that time-series momentum and moving-average cross-over strategies perform similarly across 58 liquid futures and forward contracts.

Beekhuizen and Hallerbach (2015) also links moving averages with returns, but further explores trend rules with skip periods and the popular MACD rule. Using the implied link of moving averages and returns, it shows that the MACD is as much trend following as it is mean-reversion.

Zakamulin (2015) explores price-minus-moving-average, moving-average-double-crossover, and moving-average-change-of-direction technical trading rules and finds that they can be interpreted as the computation of a weighted moving average of momentum rules with different lookback periods.

These studies are important because they help validate the approach of price-based systems. Being mathematically linked, technical approaches like moving averages can now be tied to the same theoretical basis as the growing body of work in time-series momentum.

12. Conclusion

As an investment strategy, momentum has a deep and rich history.

Its foundational principles can be traced back nearly two centuries and the 1900s were filled with its successful practitioners.

But momentum went long misunderstood and ignored by academics.

In 1993, Jegadeesh and Titman published “Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency.”  Prevailing academic theories were unable to account for cross-sectional momentum in rational pricing models and the premier market anomaly was born.

While momentum’s philosophy of “buy high, sell higher” may seem counterintuitive, prevailing explanations identify its systemized process as taking advantage of the irrational behavior exhibited by investors.

Over the two decades following momentum’s (re)introduction, academics and practitioners identified the phenomenon as being robust in different asset classes and geographies around the globe.

After the financial crisis of 2008, a focus on using time-series momentum emerged as a means to manage risk.  Much like cross-sectional momentum, time-series momentum was found to be robust, offering significant risk-management opportunities.

While new studies on momentum are consistently published, the current evidence is clear: momentum is the premier market anomaly.

 


 

Antonacci, G., (2012). “Risk Premia Harvesting Through Dual Momentum”, Portfolio Management Associates.

Asness, Clifford S., John M. Liew, and Ross L. Stevens. “Parallels Between the Cross-Sectional Predictability of Stock and Country Returns.” Journal of Portfolio Management, 23, no. 3 (Spring 1997), pp. 79–87.

Asness, Cliff, Tobias Moskowitz, and Lasse H. Pedersen (2013), “Value and Momentum Everywhere,” The Journal of Finance 68(3), 929-985.

Beekhuizen, Paul and Hallerbach, Winfried G., Uncovering Trend Rules (May 11, 2015). Available at SSRN: http://ssrn.com/abstract=2604942

Bhojraj, Sanjeev and Swaminathan, Bhaskaran, Macromomentum: Returns Predictability in Currencies and International Equity Indices (October 2002). Available at SSRN: http://ssrn.com/abstract=356940

Blitz, David and Huij, Joop and Martens, Martin, Residual Momentum (August 1, 2009). Available at SSRN: http://ssrn.com/abstract=2319861

Bruder, Benjamin and Dao, Tung-Lam and Richard, Jean-Charles and Roncalli, Thierry, Trend Filtering Methods for Momentum Strategies (December 1, 2011). Available at SSRN: http://ssrn.com/abstract=2289097

Carhart, Mark M. 1997. “On Persistence in Mutual Fund Performance.” Journal of Finance, vol. 52, no. 1 (March):57–82.

Chaves, Denis. 2012. “Eureka! A Momentum Strategy that Also Works in Japan.” Research Affiliates Working Paper (January 9).

Chen, Li-Wen and Yu, Hsin-Yi, Investor Attention, Visual Price Pattern, and Momentum Investing (August 12, 2014). 27th Australasian Finance and Banking Conference 2014 Paper. Available at SSRN: http://ssrn.com/abstract=2292895

Chui, Andy C.W. and Titman, Sheridan and Wei, K. C. John, Individualism and Momentum Around the World (February 23, 2009). Journal of Finance, Forthcoming. Available at SSRN: http://ssrn.com/abstract=1150076

Clare, Andrew and Seaton, James and Smith, Peter N. and Thomas, Steve, Size Matters: Tail Risk, Momentum and Trend Following in International Equity Portfolios (November 6, 2014). Available at SSRN: http://ssrn.com/abstract=2520075

Dudler, Martin and Gmuer, Bruno and Malamud, Semyon, Risk Adjusted Time Series Momentum (June 22, 2014). Swiss Finance Institute Research Paper No. 14-71. Available at SSRN: http://ssrn.com/abstract=2457647

Erb, Claude, and Campbell Harvey, 2006, The strategic and tactical value of commodity futures, Financial Analysts Journal 62, 69–97.

Faber, Mebane T., A Quantitative Approach to Tactical Asset Allocation (February 1, 2013). The Journal of Wealth Management, Spring 2007 . Available at SSRN: http://ssrn.com/abstract=962461

Gorton, Gary B., Fumio Hayashi, and K. Geert Rouwenhorst, 2008, The fundamentals of commodity futures returns, Working paper, University of Pennsylvania.

Griffin, John M. and Martin, J. Spencer and Ji, Susan, Momentum Investing and Business Cycle Risk: Evidence from Pole to Pole (March 18, 2002). AFA 2003 Washington, DC Meetings; EFA 2002 Berlin Meetings Presented Paper. Available at SSRN: http://ssrn.com/abstract=291225

ap Gwilym O., Clare, A., Seaton, J., Thomas, S., (2009). “Price and Momentum as Robust Tactical Approaches to Global Equity Investing”, Journal of Investing, 19, 80-92.

Hurst, B., Ooi, Y.H., Pedersen L., (2010). “Understanding Managed Futures”, AQR Working Paper.

Hurst, B., Ooi, Y. H., Pedersen, L. H., A century of Evidence on Trend- Following Investing, AQR Working paper, 2012.

Hwang, Chuan-Yang and George, Thomas J., The 52-Week High and Momentum Investing. Journal of Finance, Vol. 59, No. 5, pp. 2145-2176. Available at SSRN: http://ssrn.com/abstract=1104491

Jostova, Gergana and Nikolova, Stanislava and Philipov, Alexander and Stahel, Christof W., Momentum in Corporate Bond Returns (December 12, 2012). Available at SSRN: http://ssrn.com/abstract=1651853

Lebaron, B., 1999, Technical trading rule profitability and foreign exchange intervention, Journal of International Economics, 49, 125–143.

Lempérière,Y., Deremble, C., Seager, P., Potters, M., and Bouchard, J.P. (2014) Two centuries of trend following. arXiv:1404.3274 [q-fin.PM]

Liew, Jim Kyung-Soo and Vassalou, Maria, Can Book-to-Market, Size, and Momentum Be Risk Factors That Predict Economic Growth? (April 1999). Available at SSRN: http://ssrn.com/abstract=159293

Liu, Ming and Liu, Qianqiu and Ma, Tongshu, The 52-Week High Momentum Strategy in International Stock Markets (June 12, 2010). Journal of International Money and Finance, Vol. 30, No. 1, 2011, 180-204. Available at SSRN: http://ssrn.com/abstract=1364566

Luu, B.V., and Yu, P. “Momentum in Government-Bond Markets.” The Journal of Fixed Income, 22 (2012), pp. 72-79.

Marshall, Ben R. and Nguyen, Nhut H. and Visaltanachoti, Nuttawat, Time-Series Momentum versus Moving Average Trading Rules (December 22, 2014). Available at SSRN: http://ssrn.com/abstract=2225551

Moskowitz, Tobias J., and Mark Grinblatt. 1999. “Do Industries Explain Momentum?” Journal of Finance, vol. 54, no. 4 (August):1249–1290.

Moskowitz, Tobias J. and Ooi, Yao Hua and Pedersen, Lasse Heje, Time Series Momentum (September 1, 2011). Chicago Booth Research Paper No. 12-21; Fama-Miller Working Paper. Available at SSRN: http://ssrn.com/abstract=2089463

Rouwenhorst, K. Geert. “International Momentum Strategies.” Journal of Finance, 53, no. 1 (February 1998), pp. 267–284.

Rouwenhorst 1999. “Local Return Factors and Turnover in Emerging Stock Markets.” Journal of Finance, vol. 54, no. 4 (August):1439–1464.

Szakmary, A., Shen, Q., and Sharma, S., (2010). “Trend-Following Trading Strategies in Commodity Futures: A Re-Examination”, Journal of Banking and Finance, 34, 409-426.

Wilcox, C. and Crittenden, E. (2005). “Does Trend-Following Work on Stocks?”, BlackStar Funds.

Zakamulin, Valeriy, Market Timing with Moving Averages: Anatomy and Performance of Trading Rules (May 13, 2015). Available at SSRN: http://ssrn.com/abstract=2585056

Timing Bonds with Value, Momentum, and Carry

This post is available as a PDF download here.

Summary­­

  • Bond timing has been difficult for the past 35 years as interest rates have declined, especially since bonds started the period with high coupons.
  • With low current rates and higher durations, the stage may be set for systematic, factor-based bond investing.
  • Strategies such as value, momentum, and carry have done well historically, especially on a risk-adjusted basis.
  • Diversifying across these three strategies and employing prudent leverage takes advantage of differences in the processes and the information contained in their joint decisions.

This commentary is a slight re-visit and update to a commentary we wrote last summer, Duration Timing with Style Premia[1].  The models we use here are similar in nature, but have been updated with further details and discussion, warranting a new piece.

Historically Speaking, This is a Bad Idea

Let’s just get this out of the way up front: the results of this study are probably not going to look great.

Since interest rates peaked in September 1981, the excess return of a constant maturity 10-year U.S. Treasury bond index has been 3.6% annualized with only 7.3% volatility and a maximum drawdown of 16.4%.  In other words, about as close to a straight line up and to the right as you can get.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

With the benefit of hindsight, this makes sense.  As we demonstrated in Did Declining Rates Actually Matter?[2], the vast majority of bond index returns over the last 30+ years have been a result of the high average coupon rate.  High average coupons kept duration suppressed, meaning that changes in rates produced less volatile movements in bond prices.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

Ultimately, we estimate that roll return and benefits from downward shifts in the yield curve only accounted for approximately 30% of the annualized return.

Put another way, whenever you got “out” of bonds over this period, there was a very significant opportunity cost you were experiencing in terms of foregone interest payments, which accounted for 70% of the total return.

If we use this excess return as our benchmark, we’ve made the task nearly impossible for ourselves.  Consider that if we are making “in or out” tactical decisions (i.e. no leverage or shorting) and our benchmark is fully invested at all times, we can only outperform due to our “out” calls.  Relative to the long-only benchmark, we get no credit for correct “in” calls since correct “in” calls mean we are simply keeping up with the benchmark.  (Note: Broadly speaking, this highlights the problems with applying traditional benchmarks to tactical strategies.)  In a period of consistently positive returns, our “out” calls must be very accurate, in fact probably unrealistically accurate, to be able to outperform.

When you put this all together, we’re basically asking, “Can you create a tactical strategy that can only outperform based upon its calls to get out of the market over a period of time when there was never a good time to sell?”

The answer, barring some serious data mining, is probably, “No.”

This Might Now be a Good Idea

Yet this idea might have legs.

Since the 10-year rate peaked in 1981, the duration of a constant maturity 10-year U.S. bond index has climbed from 4.8 to 8.7.  In other words, bonds are now 1.8x more sensitive to changes in interest rates than they were 35 years ago.

If we decompose bond returns in the post-crisis era, we can see that shifts in the yield curve have played a large role in year-to-year performance.  The simple intuition is that as coupons get smaller, they are less effective as cushions against rate volatility.

Higher durations and lower coupons are a potential double whammy when it comes to fixed income volatility.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

With rates low and durations high, strategies like value, momentum, and carry may afford us more risk-managed access to fixed income.

Timing Bonds with Value

Following the standard approach taken in most literature, we will use real yields as our measure of value.  Specifically, we will estimate real yield by taking the current 10-year U.S. Treasury rate minus the 10-year forecasted inflation rate from Philadelphia Federal Reserve’s Survey of Professional Forecasters.[3]

To come up with our value timing signal, we will compare real yield to a 3-year exponentially weighted average of real yield.

Here we need to be a bit careful.  With a secular decline in real yields over the last 30 years, comparing current real yield against a trailing average of real yield will almost surely lead to an overvalued conclusion, as the trailing average will likely be higher.

Thus, we need to de-trend twice.  We first subtract real yield from the trailing average, and then subtract this difference from a trailing average of differences.  Note that if there is no secular change in real yields over time, this second step should have zero impact. What this is measuring is the deviation of real yields relative to any linear trend.

After both of these steps, we are left with an estimate of how far our real rates are away from fair value, where fair value is defined by our particular methodology rather than any type of economic analysis.  When real rates are below our fair value estimate, we believe they are overvalued and thus expect rates to go up.  Similarly, when rates are above our fair value estimate, we believe they are undervalued and thus expect them to go down.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.

Before we can use this valuation measure as our signal, we need to take one more step.  In the graph above, we see that the deviation from fair value in September 1993 was approximately the same as it was in June 2003: -130bps (implying that rates were 130bps below fair value and therefore bonds were overvalued).  However, in 1993, rates were at about 5.3% while in 2003 rates were closer to 3.3%.  Furthermore, duration was about 0.5 higher in 2003 than it was 1993.

In other words, a -130bps deviation from fair value does not mean the same thing in all environments.

One way of dealing with this is by forecasting the actual bond return over the next 12 months, including any coupons earned, by assuming real rates revert to fair value (and taking into account any roll benefits due to yield curve steepness).  This transformation leaves us with an actual forecast of expected return.

We need to be careful, however, as our question of whether to invest or not is not simply based upon whether the bond index has a positive expected return.  Rather, it is whether it has a positive expected return in excess of our alternative investment.  In this case, that is “cash.”  Here, we will proxy cash with a constant maturity 1-year U.S. Treasury index.

Thus, we need to net out the expected return from the 1-year position, which is just its yield. [4]

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.

While the differences here are subtle, had our alternative position been something like a 5-year U.S. Treasury Index, we may see much larger swings as the impact of re-valuation and roll can be much larger.

Using this total expected return, we can create a simple timing model that goes long the 10-year index and short cash when expected excess return is positive and short the 10-year index and long cash when expected excess return is negative.  As we are forecasting our returns over a 1-year period, we will employ a 1-year hold with 52 overlapping portfolios to mitigate the impact of timing luck.

We plot the results of the strategy below.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

The value strategy return matches the 10-year index excess return nearly exactly (2.1% vs 2.0%) with just 70% of the volatility (5.0% vs 7.3%) and 55% of the max drawdown (19.8% versus 36.2%).

Timing Bonds with Momentum

For all the hoops we had to jump through with value, the momentum strategy will be fairly straightforward.

We will simply look at the trailing 12-1 month total return of the index versus the alternative (e.g. the 10-year index vs. the 1-year index) and invest in the security that has outperformed and short the other.  For example, if the 12-1 month total return for the 10-year index exceeds that of the 1-year index, we will go long the 10-year and short the 1-year, and vice versa.

Since momentum tends to decay quickly, we will use a 1-month holding period, implemented with four overlapping portfolios.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

(Note that this backtest starts earlier than the value backtest because it only requires 12 months of returns to create a trading signal versus 6 years of data – 3 for the value anchor and 3 to de-trend the data – for the value score.)

Compared to the buy-and-hold approach, the momentum strategy increases annualized return by 0.5% (1.7% versus 1.2%) while closely matching volatility (6.7% versus 6.9%) and having less than half the drawdown (20.9% versus 45.7%).

Of course, it cannot be ignored that the momentum strategy has largely gone sideways since the early 1990s.  In contrast to how we created our bottom-up value return expectation, this momentum approach is a very blunt instrument.  In fact, using momentum this way means that returns due to differences in yield, roll yield, and re-valuation are all captured simultaneously.  We can really think of decomposing our momentum signal as:

10-Year Return – 1-Year Return = (10-Year Yield – 1-Year Yield) + (10-Year Roll – 1-Year Roll) + (10-Year Shift – 1-Year Shift)

Our momentum score is indiscriminately assuming momentum in all the components.  Yet when we actually go to put on our trade, we do not need to assume momentum will persist in the yield and roll differences: we have enough data to measure them explicitly.

With this framework, we can isolate momentum in the shift component by removing yield and roll return expectations from total returns.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

Ultimately, the difference in signals is minor for our use of 10-year versus 1-year, though it may be far less so in cases like trading the 10-year versus the 5-year.  The actual difference in resulting performance, however, is more pronounced.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

Ironically, by doing worse mid-period, the adjusted momentum long/short strategy appears to be more consistent in its return from the early 1990s through present.  We’re certain this is more noise than signal, however.

Timing Bonds with Carry

Carry is the return we earn by simply holding the investment, assuming everything else stays constant.  For a bond, this would be the yield-to-maturity.  For a constant maturity bond index, this would be the coupon yield (assuming we purchase our bonds at par) plus any roll yield we capture.

Our carry signal, then, will simply be the difference in yields between the 10-year and 1-year rates plus the difference in expected roll return.

For simplicity, we will assume roll over a 1-year period, which makes the expected roll of the 1-year bond zero.  Thus, this really becomes, more or less, a signal to be long the 10-year when the yield curve is positively sloped, and long the 1-year when it is negatively sloped.

As we are forecasting returns over the next 12-month period, we will use a 12-month holding period and implement with 52 overlapping portfolios.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

Again, were we comparing the 10-year versus the 5-year instead of the 10-year versus the 1-year, the roll can have a large impact.  If the curve is fairly flat between the 5- and 10-year rates, but gets steep between the 5- and the 1-year rates, then the roll expectation from the 5-year can actually overcome the yield difference between the 5- and the 10-year rates.

Building a Portfolio of Strategies

With three separate methods to timing bonds, we can likely benefit from process diversification by constructing a portfolio of the approaches.  The simplest method to do so is to simply give each strategy an equal share.  Below we plot the results.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

Indeed, by looking at per-strategy performance, we can see a dramatic jump in Information Ratio and an exceptional reduction in maximum drawdown.  In fact, the maximum drawdown of the equal weight approach is below that of any of the individual strategies, highlighting the potential benefit of diversifying away conflicting investment signals.

StrategyAnnualized ReturnAnnualized VolatilityInformation
Ratio
Max
Drawdown
10-Year Index Excess Return2.0%7.3%0.2736.2%
Value L/S2.0%5.0%0.4119.8%
Momentum L/S1.9%6.9%0.2720.9%
Carry L/S2.5%6.6%0.3820.1%
Equal Weight2.3%4.0%0.5710.2%

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.  Performance measured from 6/1974 to 1/2018, representing the full overlapping investment period of the strategies.

One potential way to improve upon the portfolio construction is by taking into account the actual covariance structure among the strategies (correlations shown in the table below).  We can see that, historically, momentum and carry have been fairly positively correlated while value has been independent, if not slightly negatively correlated.  Therefore, an equal-weight approach may not be taking full advantage of the diversification opportunities presented.

Value L/SMomentum L/SCarry L/S
Value L/S1.0-0.2-0.1
Momentum L/S-0.21.00.6
Carry L/S-0.10.61.0

To avoid making any assumptions about the expected returns of the strategies, we will construct a portfolio where each strategy contributes equally to the overall risk profile (“ERC”).  So as to avoid look-ahead bias, we will use an expanding window to compute our covariance matrix (seeding with at least 5 years of data).  While the weights vary slightly over time, the result is a portfolio where the average weights are 43% value, 27% momentum, and 30% carry.

The ERC approach matches the equal-weight approach in annualized return, but reduces annualized volatility from 4.2% to 3.8%, thereby increasing the information ratio from 0.59 to 0.64.  The maximum drawdown also falls from 10.2% to 8.7%.

A second step we can take is to try to use the “collective intelligence” of the strategies to set our risk budget.  For example, we can have our portfolio target the long-term volatility of the 10-year Index Excess Return, but scale this target between 0-2x depending on how invested we are.

For example, if the strategies are, in aggregate, only 20% invested, then our target volatility would be 0.4x that of the long-term volatility.  If they are 100% invested, though, then we would target 2x the long-term volatility.  When the strategies are providing mixed signals, we will simply target the long-term volatility level.

Unfortunately, such an approach requires going beyond 100% notional exposure, often requiring 2x – if not 3x – leverage when current volatility is low.  That makes this system less useful in the context of “bond timing” since we are now placing a bet on current volatility remaining constant and saying that our long-term volatility is an appropriate target.

One way to limit the leverage is to increase how much we are willing to scale our risk target, but truncate our notional exposure at 100% per leg.  For example, we can scale our risk target between 0-4x.  This may seem very risky (indeed, an asymmetric bet), but since we are clamping our notional exposure to 100% per leg, we should recognize that we will only hit that risk level if current volatility is greater than 4x that of the long-term average and all the strategies recommend full investment.

With a little mental arithmetic, the approach it is equivalent to saying: “multiply the weights by 4x and then scale based on current volatility relative to historical volatility.”  By clamping weights between -100% and +100%, the volatility targeting really does not come into play until current volatility is 4x that of long-term volatility.  In effect, we leg into our trades more quickly, but de-risk when volatility spikes to abnormally high levels.

Source: Federal Reserve of St. Louis.  Philadelphia Federal Reserve.  Calculations by Newfound Research.  Results are hypothetical and backtested.  Past performance is not a guarantee of future results.  Returns are gross of all fees (including management fees, transaction costs, and taxes).  Returns assume the reinvestment of all income and distributions.

Compared to the buy-and-hold model, the variable risk ERC model increases annualized returns by 90bps (2.4% to 3.3%), reduces volatility by 260bps (7.6% to 5.0%), doubles the information ratio (0.31 to 0.66) and halves the maximum drawdown (30% to 15%).

There is no magic to the choice of “4” above: it is just an example.  In general, we can say that as the number goes higher, the strategy will approach a binary in-or-out system and the volatility scaling will have less and less impact.

Conclusion

Bond timing has been hard for the past 35 years as interest rates have declined. Small current coupons do not provide nearly the cushion against rate volatility that investors have been used to, and these lower rates mean that bonds are also exposed to higher duration.

These two factors are a potential double whammy when it comes to fixed income volatility.

This can open the door for systematic, factor-based bond investing.

Value, momentum, and carry strategies have all historically outperformed a buy-and-hold bond strategy on a risk adjusted basis despite the bond bull market.  Diversifying across these three strategies and employing prudent leverage takes advantage of differences in the processes and the information contained in their joint decisions.

We should point out that in the application of this approach, there were multiple periods of time in the backtest where the strategy went years without being substantially invested.  A smooth, nearly 40-year equity curve tells us very little about what it is actually like to sit on the sidelines during these periods and we should not underestimate the emotional burden of using such a timing strategy.

Even with low rates and high rate movement sensitivity, bonds can still play a key role within a portfolio. Going forward, however, it may be prudent for investors to consider complementary risk-management techniques within their bond sleeve.

 


 

[1] https://blog.thinknewfound.com/2017/06/duration-timing-style-premia/

[2] https://blog.thinknewfound.com/2017/04/declining-rates-actually-matter/

[3] Prior to the availability of the 10-year inflation estimate, the 1-year estimate is utilized; prior to the 1-year inflation estimate availability, the 1-year GDP price index estimate is utilized.

[4] This is not strictly true, as it largely depends on how the constant maturity indices are constructed.  For example, if they are rebalanced on a monthly basis, we would expect that re-valuation and roll would have impact on the 1-year index return.  We would also have to alter the horizon we are forecasting over as we are assuming we are rolling into new bonds (with different yields) more frequently.

Navigating Municipal Bonds With Factors

This post is available as a PDF download here.

Summary

  • In this case study, we explore building a simple, low cost, systematic municipal bond portfolio.
  • The portfolio is built using the low volatility, momentum, value, and carry factors across a set of six municipal bond sectors. It favors sectors with lower volatility, better recent performance, cheaper valuations, and higher yields.  As with other factor studies, a multi-factor approach is able to harvest major benefits from active strategy diversification since the factors have low correlations to one another.
  • The factor tilts lead to over- and underweights to both credit and duration through time. Currently, the portfolio is significantly underweight duration and modestly overweight credit.
  • A portfolio formed with the low volatility, value, and carry factors has sufficiently low turnover that these factors may have value in setting strategic allocations across municipal bond sectors.

 

Recently, we’ve been working on building a simple, ETF-based municipal bond strategy.  Probably to the surprise of nobody who regularly reads our research, we are coming at the problem from a systematic, multi-factor perspective.

For this exercise, our universe consists of six municipal bond indices:

  • Bloomberg Barclays AMT-Free Short Continuous Municipal Index
  • Bloomberg Barclays AMT-Free Intermediate Continuous Municipal Index
  • Bloomberg Barclays AMT-Free Long Continuous Municipal Index
  • Bloomberg Barclays Municipal Pre-Refunded-Treasury-Escrowed Index
  • Bloomberg Barclays Municipal Custom High Yield Composite Index
  • Bloomberg Barclays Municipal High Yield Short Duration Index

These indices, all of which are tracked by VanEck Vectors ETFs, offer access to municipal bonds across a range of durations and credit qualities.

Source: VanEck

Before we get started, why are we writing another multi-factor piece after addressing factors in the context of a multi-asset universe just two weeks ago?

The simple answer is that we find the topic to be that pressing for today’s investors.  In a world of depressed expected returns and elevated correlations, we believe that factor-based strategies have a role as both return generators and risk mitigators.

Our confidence in what we view as the premier factors (value, momentum, low volatility, carry, and trend) stems largely from their robustness in out-of-sample tests across asset classes, geographies, and timeframes.  The results in this case study not only suggest that a factor-based approach is feasible in muni investing, but also in our opinion strengthens the case for factor investing in other contexts (e.g. equities, taxable fixed income, commodities, currencies, etc.).

Constructing Long/Short Factor Portfolios

For the municipal bond portfolio, we consider four factors:

  1. Value: Buy undervalued sectors, sell overvalued sectors
  2. Momentum: Buy strong recent performers, sell weak recent performers
  3. Low Volatility: Buy low risk sectors, sell high risk sectors
  4. Carry: Buy higher yielding sectors, sell lower yielding sectors

As a first step, we construct long/short single factor portfolios.  The weight on index i at time t in long/short factor portfolio f is equal to:

In this formula, c is a scaling coefficient,  S is index i’s time t score on factor f, and N is the number of indices in the universe at time t.

We measure each factor with the following metrics:

  1. Value: Normalized deviation of real yield from the 5-year trailing average yield[1]
  2. Momentum: Trailing twelve month return
  3. Low Volatility: Historical standard deviation of monthly returns[2]
  4. Carry: Yield-to-worst

For the value, momentum, and carry factors, the scaling coefficient  is set so that the portfolio is dollar neutral (i.e. we are long and short the same dollar amount of securities).  For the low volatility factor, the scaling coefficient is set so that the volatilities of the long and short portfolios are approximately equal.  This is necessary since a dollar neutral construction would be perpetually short “beta” to the overall municipal bond market.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results.

All four factors are profitable over the period from June 1998 to April 2017.  The value factor is the top performer both from an absolute return and risk-adjusted return perspective.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability.

 

There is significant variation in performance over time.  All four factors have years where they are the best performing factor and years where they are the worst performing factor.  The average annual spread between the best performing factor and the worst performing factor is 11.3%.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability. 1998 is a partial year beginning in June 1998 and 2017 is a partial year ending in April 2017.

 

The individual long/short factor portfolios are diversified to both each other (average pairwise correlation of -0.11) and to the broad municipal bond market.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results.

 

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results.

Moving From Single Factor to Multi-Factor Portfolios

The diversified nature of the long/short return streams makes a multi-factor approach hard to beat in terms of risk-adjusted returns.  This is another example of the type of strategy diversification that we have long lobbied for.

As evidence of these benefits, we have built two versions of a portfolio combining the low volatility, value, carry, and momentum factors.  The first version targets an equal dollar allocation to each factor.  The second version uses a naïve risk parity approach to target an approximately equal risk contribution from each factor.

Both approaches outperform all four individual factors on a risk-adjusted basis, delivering Sharpe Ratios of 1.19 and 1.23, respectively, compared to 0.96 for the top single factor (value).

Data Source: Bloomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability. The factor risk parity construction uses a simple inverse volatility methodology. Volatility estimates are shrunk in the early periods when less data is available.

 

To stress this point, diversification is so plentiful across the factors that even the simplest portfolio construction methodologies outperforms an investor who was able to identify the best performing factor with perfect foresight.  For additional context, we constructed a “Look Ahead Mean-Variance Optimization (“MVO”) Portfolio” by calculating the Sharpe optimal weights using actual realized returns, volatilities, and correlations.  The Look Ahead MVO Portfolio has a Sharpe Ratio of 1.43, not too far ahead of our two multi-factor portfolios.  The approximate weights in the Look Ahead MVO Portfolio are 49% to Low Volatility, 25% to Value, 15% to Carry, and 10% to Momentum.  While the higher Sharpe Ratio factors (Low Volatility and Value) do get larger allocations, Momentum and Carry are still well represented due to their diversification benefits.

Data Source: Bloomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability. The factor risk parity construction uses a simple inverse volatility methodology. Volatility estimates are shrunk in the early periods when less data is available.

 

From a risk perspective, both multi-factor portfolios have lower volatility than any of the individual factors and a maximum drawdown that is within 1% of the individual factor with the least amount of historical downside risk.  It’s also worth pointing out that the risk parity construction leads to a return stream that is very close to normally distributed (skew of 0.1 and kurtosis of 3.0).

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability. The factor risk parity construction uses a simple inverse volatility methodology. Volatility estimates are shrunk in the early periods when less data is available.

 

In the graph on the next page, we present another lens through which we can view the tremendous amount of diversification that can be harvested between factors.  Here we plot how the allocation to a specific factor, using MVO, will change as we vary that factor’s Sharpe Ratio.  We perform this analysis for each factor individually, holding all other parameters fixed at their historical levels.

As an example, to estimate the allocation to the Low Volatility factor at a Sharpe Ratio of 0.1, we:

  1. Assume the covariance matrix is equal to the historical covariance over the full sample period.
  2. Assume the excess returns for the other three factors (Carry, Momentum, and Value) are equal to their historical averages.
  3. Assume the annualized excess return for the Low Volatility factor is 0.16% so that the Sharpe Ratio is equal to our target of 0.1 (Low Volatility’s annualized volatility is 1.6%).
  4. Calculate the MVO optimal weights using these excess return and risk assumptions.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability. The factor risk parity construction uses a simple inverse volatility methodology. Volatility estimates are shrunk in the early periods when less data is available.

 

As expected, Sharpe Ratios and allocation sizes are positively correlated.  Higher Sharpe Ratios lead to higher allocations.

That being said, three of the factors (Low Volatility, Carry, and Momentum) would receive allocations even if their Sharpe Ratios were slightly negative.

The allocations to carry and momentum are particularly insensitive to Sharpe Ratio level.  Momentum would receive an allocation of 4% with a 0.00 Sharpe, 9% with a 0.25 Sharpe, 13% with a 0.50 Sharpe, 17% with a 0.75 Sharpe, and 20% with a 1.00 Sharpe.  For the same Sharpe Ratios, the allocations to Carry would be 10%, 15%, 19%, 22%, and 24%, respectively.

Holding these factors provides a strong ballast within the multi-factor portfolio.

Moving From Long/Short to Long Only

Most investors have neither the space in their portfolio for a long/short muni strategy nor sufficient access to enough affordable leverage to get the strategy to an attractive level of volatility (and hence return).  A more realistic approach would be to layer our factor bets on top of a long only strategic allocation to muni bonds.

In a perfect world, we could slap one of our multi-factor long/short portfolios right on top of a strategic municipal bond portfolio.  The results of this approach (labeled “Benchmark + Equal Weight Factor Long/Short” in the graphics below) are impressive (Sharpe Ratio of 1.17 vs. 0.93 for the strategic benchmark and return to maximum drawdown of 0.72 vs. 0.46 for the strategic benchmark).  Unfortunately, this approach still requires just a bit of shorting. The size of the total short ranges from 0% to 19% with an average of 5%.

We can create a true long only portfolio (“Long Only Factor”) by removing all shorts and normalizing so that our weights sum to one.  Doing so modestly reduces risk, return, and risk-adjusted return, but still leads to outperformance vs. the benchmark.

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability.

 

Data Source: Blooomberg. Calculations by Newfound Research. All returns are hypothetical and backtested. Returns reflect the reinvestment of all distributions and are gross of all fees (including any management fees and transaction costs). The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. The benchmark is an equal-weight portfolio of all indices in the universe adjusted for the indices that are calibrated and included in each long/short factor index based on data availability.

 

Below we plot both the historical and current allocations for the long only factor portfolio.  Currently, the portfolio would have approximately 25% in each short-term investment grade, pre-refunded, and short-term high yield with the remaining 25% split roughly 80/20 between high yield and intermediate-term investment grade. There is currently no allocation to long-term investment grade.

Data Source: Blooomberg. Calculations by Newfound Research. All allocations are backtested and hypothetical. The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results.

 

Data Source: Blooomberg. Calculations by Newfound Research. All allocations are backtested and hypothetical. The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results.

 

A few interesting observations relating to the long only portfolio and muni factor investing in general:

  1. The factor tilts lead to clear duration and credit bets over time.  Below we plot the duration and a composite credit score for the factor portfolio vs. the benchmark over time.

    Data source: Calculations by Newfound Research. All allocations are backtested and hypothetical. The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. Weighted average durations are estimated using current constituent durations.

    Data source: Calculations by Newfound Research. All allocations are backtested and hypothetical. The hypothetical indices start on June 30, 1998. The start date was chosen based on data availability of the underlying indices and the time necessary to calibrate the factor models. Data is through April 30, 2017. The portfolios are reconstituted monthly. Past performance does not guarantee future results. Weighted average credit scores are estimated using current constituent credit scores. Credit scores use S&P’s methodology to aggregate scores based on the distribution of credit scores of individual bonds.

    Currently, the portfolio is near an all-time low in terms of duration and is slightly titled towards lower credit quality sectors relative to the benchmark.  Historically, the factor portfolio was most often overweight both duration and credit, having this positioning in 53.7% of the months in the sample.  The second and third most common tilts were underweight duration / underweight credit (22.0% of sample months) and underweight duration / overweight credit (21.6% of sample months).  The portfolio was overweight duration / underweight credit in only 2.6% of sample months.

  2. Even for more passive investors, a factor-based perspective can be valuable in setting strategic allocations.  The long only portfolio discussed above has annualized turnover of 77%.  If we remove the momentum factor, which is by far the biggest driver of turnover, and restrict ourselves to a quarterly rebalance, we can reduce turnover to just 18%.  This does come at a cost, as the Sharpe Ratio drops from 1.12 to 1.04, but historical performance would still be strong relative to our benchmark. This suggests that carry, value, and low volatility may be valuable in setting strategic allocations across municipal bond ETFs with only periodic updates at a normal strategic rebalance frequency.
  3. We ran regressions with our long/short factors on all funds in the Morningstar Municipal National Intermediate category with a track record that extended over our full sample period from June 1998 to April 2017.  Below, we plot the betas of each fund to each of our four long/short factors.  Blue bars indicate that the factor beta was significant at a 5% level.  Gray bars indicate that the factor beta was not significant at a 5% level.  We find little evidence of the active managers following a factor approach similar to what we outline in this post.  Part of this is certainly the result of the constrained nature of the category with respect to duration and credit quality.  In addition, these results do not speak to whether any of the managers use a factor-based approach to pick individual bonds within their defined duration and credit quality mandates.

    Data source: Calculations by Newfound Research. Analysis over the period from June 1998 to April 2017.

    The average beta to the low volatility factor, ignoring non-statistically significant values, is -0.23.  This is most likely a function of category since the category consists of funds with both investment grade credit quality and durations ranging between 4.5 and 7.0 years.  In contrast, our low volatility factor on average has short exposure to the intermediate and long-term investment grade sectors.

    Data source: Calculations by Newfound Research. Analysis over the period from June 1998 to April 2017.

    Only 14 of the 33 funds in the universe have statistically significant exposure to the value factor with an average beta of -0.03.

    Data source: Calculations by Newfound Research. Analysis over the period from June 1998 to April 2017.

    The average beta to the carry factor, ignoring non-statistically significant values, is -0.23.  As described above with respect to low volatility, this is most likely function of category as our carry factor favors the long-term investment grade and high yield sectors.

    Data source: Calculations by Newfound Research. Analysis over the period from June 1998 to April 2017.

    Only 9 of the 33 funds in the universe have statistically significant exposure to the momentum factor with an average beta of 0.02.

Conclusion

Multi-factor investing has generated significant press in the equity space due to the (poorly named) “smart beta” movement.  The popular factors in the equity space have historically performed well both within other asset classes (rates, commodities, currencies, etc.) and across asset classes.  The municipal bond market is no different.  A simple, systematic multi-factor process has the potential to improve risk-adjusted performance relative to static benchmarks.  The portfolio can be implemented with liquid, low cost ETFs.

Moving beyond active strategies, factors can also be valuable tools when setting strategic sector allocations within a municipal bond sleeve and when evaluating and blending municipal bond managers.

Perhaps more importantly, the out-of-sample evidence for the premier factors (momentum, value, low volatility, carry, and trend) across asset classes, geographies, and timeframes continues to mount.  In our view, this evidence can be crucial in getting investors comfortable to introducing systematic active premia into their portfolios as both return generators and risk mitigators.

 

[1] Computed using yield-to-worst.  Inflation estimates are based on 1-year and 10-year survey-based expected inflation.  We average the value score over the last 2.5 years, allowing the portfolio to realize a greater degree of valuation mean reversion before closing out a position.

[2] We use a rolling 5-year (60-month) window to calculate standard deviation.  We require at least 3 years of data for an index to be included in the low volatility portfolio.  The standard deviation is multiplied by -1 so that higher values are better across all four factor scores.

 

 

Did Declining Rates Actually Matter?

This post is available as a PDF here.

Summary­­

  • From 1981 to 2017, 10-year U.S. Treasury rates declined from north of 15% to below 2%.
  • Since bond prices appreciate when rates decline, many have pointed towards this secular decline as a tailwind that created an unprecedented bull market in bonds.
  • Exactly how much declining rates contributed, however, is rarely quantified. An informal poll, however, tells us that people generally believe the impact was significant (explaining >50% of bond returns).
  • We find that while, in theory, investors should be indifferent to rate changes, high turnover in bond portfolios means that a structural mis-estimation of rate changes could be harvested.
  • Despite the positive long-term impact of declining rates, coupon yield had a much more significant impact on long-term returns.
  • The bull market in bonds was caused more by the high average rates over the past 30 years than declining rates.

 

On 9/30/1981, the 10-year U.S. Treasury rate peaked at an all-time high of 15.84%.  Over the next 30 years, it deflated to an all-time low of 1.37% on 7/5/2016.

Source: Federal Reserve of St. Louis

 

It has been repeated in financial circles that this decline in rates caused a bull market in bond returns that makes past returns a particularly poor indicator of future results.

But exactly how much did those declining rates contribute?

We turned to our financial circle on Twitter[1] with a question: For a constant maturity, 10-year U.S. Treasury index, what percent of total return from 12/1981 through 12/2012 could be attributed to declining rates?

Little consensus was found.

 

Clearly there is a large disparity in views about exactly how much declining rates actually contributed to bond returns over the last 30 years.  What we can see is that people generally think it is a lot: over 50% of people said over 50% of returns can be attributed to declining rates.

Well let’s dig in and find out.

 

Rates Down, Bonds Up

To begin, let’s remind ourselves why the bond / rate relationship exists in the first place.

Imagine you buy a 10-year U.S. Treasury bond for $100 at the prevailing 5% rate.  Immediately after you buy, interest rates drop: all available 10-year U.S. Treasury bonds – still selling for $100 – are now offering only a 4% yield.

In every other way, except the yield being offered, the bond you now hold and the bonds being offered in the market are identical.  Except yours provides a higher yield.

Therefore, it should be more valuable.  After all, you are getting more return for your investment.  And hence we get the inverse relationship between bonds and interest rates.  As rates fall, existing bond values go up and as rates rise, existing bond values go down.

With rates falling by an average of 42 basis points a year over the last 35 years, we can imagine a pretty steady, and potentially sizable tailwind to returns.

 

Just How Much More Valuable?

In our example, exactly how much did our bond appreciate when rates fell?  Or, to ask the question another way: how much would someone now be willing to buy our bond for?

The answer arises from the fact that markets loathe an arbitrage opportunity.  Scratch that: markets love arbitrage.  So much so that they are quickly wiped away as market participants jump to exploit them.

We mentioned that in the example, the bond you held and the bonds now being offered by the market were identical in every fashion except the coupon yield they offer.

Consider what would happen if the 4% bonds and your 5% bonds were both still selling for $100.  Someone could come to the market, ­short-sell a 4% bond and use the $100 to buy your 5% bond from you.  Each coupon period, they would collect $5 from the bond they bought from you, pay $4 to cover the coupon payment they owe from the short-sale, and pocket $1.

Effectively, they’ve created a free stream of $1 bills.

Knowing this to be the case, someone else might step in first and try to offer you $101 for your bond to sweeten the deal.  Now they must finance by short-selling 1.01 shares of the 4% bonds, owing $4.04 each period and $101 at maturity.  While less profitable, they would still pocket a free $0.86 per coupon payment.[2]

The scramble to sweeten the offer continues until it reaches the magic figure of $108.11.  At this price, the arbitrage disappears: the cost of financing exactly offsets the extra yield earned by the bond.

Another way of saying this is that the yield-to-maturity of both bonds is identical.  If someone pays $108.11 for the 5% coupon bond, they may receive a $5 coupon each period, but there will be a “pull-to-par” effect as the bond matures, causing the bond to decline in value.  This effect occurs because the bond has a pre-defined payout stream: at maturity, you are only going to receive your $100 back.

 

Therefore, while your coupon yield may be 5%, your effective yield – which accounts for this loss in value over time – is 4%, perfectly matching what is available to other investors.

And so everyone becomes indifferent[3] to which bond they hold.  The bond you hold may be worth more on paper, but if we try to sell it to lock in our profit, we have to reinvest at a lower yield and offsets our gain.

In a strange way, then, other than mark-to-market gains and losses, we should be largely indifferent to rate changes. 

 

The Impact of Time

One very important aspect ignored by our previous example is time.  Interest rates rarely gap up or down instantaneously: rather they move over time.

We therefore need to consider the yield curve.  The yield curve tells us what rate is being offered for bonds of different maturities.

Source: Federal Reserve of St. Louis.

 

In the yield curve plotted above, we see an upward sloping trend.  Buying a 7-year U.S. Treasury earns us a 2.25% rate, while the 10-year U.S. Treasury offers 2.45%.

Which introduces an interesting dynamic: if rates do not change whatsoever, if we buy a 10-year bond today and wait three years, our bond will appreciate in value.

Why?

The answer is because it is now a 7-year bond, and compared to other 7-year bonds it is offering 0.20% more yield.

In fact, depending on the shape of the yield curve, it can continue to appreciate until the pull-to-par effect becomes too strong.  Below we plot the value of a 10-year U.S. Treasury as it matures, assuming that the yield curve stays entirely constant over time.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

 

Unfortunately, like in our previous example, the amount of the bond gains in value is exactly equal to the level required to make us indifferent to holding the bond to maturity or selling it and reinvesting at the prevailing rate.  For all intents and purposes, we could simply pretend we bought a 7-year bond at 2.45% and rates fell instantly to 2.25%.  By the same logic as before, we’re no better off.

We simply cannot escape the fact that markets are not going to give us a free return.

 

The Impact of Choice

Again, reality is more textured than theory.  We are ignoring an important component: choice.

In our prior examples, our choice was between continuing to hold our bond, or selling it and reinvesting in the equivalent bond.  What if we chose to reinvest in something else?

For example:

  • We buy a 2.45% 10-year U.S. Treasury for $100
  • We wait three years
  • We sell the now 7-year U.S. Treasury for $101.28 (assuming the yield curve did not change)
  • We reinvest in 2.45% 10-year U.S. Treasuries, sold at $100

If the yield curve never changes, we can keep capturing this roll return by simply waiting, selling, and buying what we previously owned.

What’s the catch?  The catch, of course, is that we’re assuming rates won’t change.  If we stop for a moment, however, and consider what the yield curve is telling us, we realize this assumption may be quite poor.

The yield curve provides several rates at which we can invest.  What if we are only interested in investing over the next year?  Well, we can buy a 1-year U.S. Treasury at 0.85% and just hold it to maturity, or we could buy a 10-year U.S. Treasury for 2.45% and sell it after a year.

That is a pretty remarkable difference in 1-year return potential.

If the market is even reasonably efficient, then the expected 1-year return, no matter where we buy on the curve, should be the same.  Therefore, the only way the 10-year U.S. Treasury yield should be so much higher than the 1-year is if the market is predicting that rates are going to go up such that the extra yield is exactly offset by the price loss we take when we sell the bond.

Hence a rising yield curve tells us the market is expecting rising rates.  At least, that’s what the pure expectations hypothesis (“PEH”) says.  Competing theories argue that investors should earn at least some premium for bearing term risk.  Nevertheless, there should be some component of a rising yield curve that tells us rates should go up.

However, over the past 35 years, the average slope of the yield curve (measured as 10-year yields minus 2-year yields) has been over 100bp.  The market was, in theory, was consistently predicting rising rates over a period rates fell.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research.

 

Not only could an investor potentially harvest roll-yield, but also the added bump from declining rates.

Unfortunately, doing so would require significant turnover.  We would have to constantly sell our bonds to harvest the gains.

While this may have created opportunity for active bond managers, a total bond market index typically holds bonds until maturity.

 

Turnover in a Bond Index

Have you ever looked at the turnover in a total bond market index fund?  You might be surprised.

While the S&P 500 has turnover of approximately 5% per year, the Bloomberg Barclay’s U.S. Aggregate often averages between 40-60% per year.

Where is all that turnover coming from?

  • Index additions (e.g. new issuances)
  • Index deletions (e.g. maturing bonds)
  • Paydowns
  • Coupon reinvestment

If the general structure of the fixed income market does not change considerably over time, this level of turnover implies that a total bond market index will behave very similarly to a constant duration bond fund.

Bonds are technically held to maturity, but roll return and profit/loss from shifts in interest rates are booked along the way as positions are rebalanced.

Which means that falling rates could matter.  Even better, we can test how much falling rates mattered by proxying a total bond index with a constant maturity bond index[4].

Specifically, we will look at a constant maturity 10-year U.S. Treasury index.  We will assume 10-year Treasuries are bought at the beginning of each year, held for a year, and sold as 9-year Treasuries[5].  The proceeds will then be reinvested back into the new 10-year Treasuries.  We will also assume that coupons are paid annually.

We ran the test from 12/1981 to 12/2012, since those dates represented both the highest and lowest end-of-year rates.

We will then decompose returns into three components:

  • Coupon yield (“Coupon”)
  • Roll return (“Roll”)
  • Rate changes (“Shift”)

Coupon yield is, simply, the return we get from the coupon itself.  Roll return is equal to the slope between 10-year and 9-year U.S. Treasuries at the point of purchase adjusted by the duration of the bond.  Rate changes are measured as price return we achieve due to shifts in the 9-year rate from the point at which we purchased the bond and the point at which we are selling it.

This allows us to create a return stream for each component as well as identify each component’s contribution to the total return of the index.

Source: Federal Reserve of St. Louis.  Calculations by Newfound Research

 

What we can see is that coupon return dominates roll and shift.  On an annualized basis, coupon was 6.24%, while roll only contributed 0.24% and shift contributed 2.22%.

Which leaves us with a final decomposition: coupon yield accounted for 71% of return, roll accounted for 3%, and shift accounted for 26%.

We can perform a similar test for constant maturity indices constructed at different points on the curve as well.

 

Total Return% Contribution
CouponRollShiftCouponRollShift
10-year6.24%0.24%2.22%71.60%2.84%25.55%
7-year6.08%0.62%1.72%72.16%7.37%20.47%
5-year5.81%0.65%1.29%75.01%8.38%16.61%

 

 

Conclusion: Were Declining Rates Important?

A resounding yes.  An extra 2.22% per year over 30+ years is nothing to sneeze at.  Especially when you consider that this was the result of a very unique period unlikely to be repeated over the next 30 years.

Just as important to consider, however, is that it was not the most important contributor to total returns.  While most people in our poll answered that decline in rates would account for 50%+ of total return, the shift factor only came in at 26%.

The honor of the highest contributor goes to coupon yield.  Even though rates deflated over 30 years, the average yield was high enough to be, by far and away, the biggest contributor to returns.

The bond bull was not due to declining rates, in our opinion, but rather the unusually high rates we saw over the period.

A fact which is changing today.  We can see this by plotting the annual sources of returns year-by-year.

Source: St. Louis Federal Reserve.  Calculations by Newfound Research.

 

Note that while coupon is always a positive contributor, its role has significantly diminished in recent years compared to the influence of rate changes.

The consistency of coupon and the varying influence of shift on returns (i.e. both positive and negative) means that coupon yield actually makes an excellent predictor of future returns.  Lozada (2015)[6] finds that the optimal horizon to use yield as a predictor of return in constant duration or constant-maturity bond funds is at twice the duration.

Which paints a potentially bleak picture for fixed income investors.

 

FundAssetDurationTTM YieldPredicted Return
AGGU.S. Aggregate Bonds5.742.37%2.37% per year through 2028
IEI3-7 Year U.S. Treasuries4.481.31%1.31% per year through 2025
IEF7-10 Year U.S. Treasuries7.591.77%1.77% per year through 2032
TLT20+ Year U.S. Treasuries17.392.56%2.56% per year through 2051
LQDInvestment Grade Bonds8.243.28%3.28% per year through 2033

Source: iShares.  Calculations by Newfound Research.

 

Note that we are using trailing 12-month distribution yield for the ETFs here.  We do this because ETF issuers often amortize coupon yield to account for pull-to-par effects, making it an approximation of yield-to-worst.  It is not perfect, but we don’t think the results materially differ in magnitude with any other measure: it’s still ugly.

The story remains largely the same as we’ve echoed over the past year: when it comes to fixed income, your current yield will be a much better predictor of returns than trying to guess about changing rates.

Coupon yield had 3x the influence on total return over the last 30 years than changes in rates did.

What we should be concerned about today is not rising rates: rather, we should be concerned about the returns that present low rates imply for the future.

And we should be asking ourselves: are there other ways we can look to manage risk or find return?

[1] Find us on Twitter!  Newfound is @thinknewfound and Corey is @choffstein.

[2] It is $0.86 instead of $0.96 because they need to set aside $0.10 to cover the extra dollar they owe at maturity.

[3] This is a bit of a simplification as the bonds will have different risk characteristics (e.g. different durations and convexity) which could cause investors, especially those with views on future rate changes, to prefer one bond over the other.

[4] We made the leap here from total bond index to constant duration index to constant maturity index.  Each step introduces some error, but we believe for our purposes the error is de minimis and a constant maturity index allows for greater ease of implementation.

[5] Since no 9-year U.S. Treasury is offered, we create a model for the yield curve using cubic splines and then estimate the 9-year rate.

[6] http://content.csbs.utah.edu/~lozada/Research/IniYld_6.pdf

 

Page 3 of 3

Powered by WordPress & Theme by Anders Norén