This post is available as a PDF download here.
Summary
- A long/flat tactical equity strategy with a portable beta bond overlay – a tactical 90/60 portfolio – has many moving parts that can make attribution and analysis difficult.
- By decomposing the strategy into its passive holdings (a 50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we can explore the historical performance of each component and diversification benefits across each piece of the strategy.
- Using a mean-variance framework, we are also able to construct an efficient frontier of the strategy components and assess the differences between the optimal portfolio and the tactical 90/60.
- We find that the tactical 90/60 is relatively close to the optimal portfolio for its volatility level and that its drawdown risk profile is close to that of an unlevered 60/40 portfolio.
- By utilizing a modest amount of leverage and pairing it will risk management in both equities and bonds, investors may be able to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk.
Portable beta strategies seek to enhance returns by overlaying an existing portfolio strategy with complementary exposure to diversifying asset classes and strategies. In overlaying exposure on an existing portfolio strategy, portable beta strategies seek to make every invested dollar work harder. This idea can create “capital efficiency” for investors, freeing up dollars in an investor’s portfolio to invest in other asset classes or investment opportunities.
At Newfound, we focus on managing risk. Trend following – or absolute momentum – is a key approach we employ do this, especially in equities. Trend equity strategies are a class of strategies that aim to harvest the long-term benefits of the equity risk premium while managing downside risk through the application of trend following.
We wrote previously how a trend equity strategy can be decomposed into passive and active components in order to isolate different contributors to performance. There is more than one way to do this, but in the most symmetric formulation, a “long/flat” trend equity strategy (one that that either holds equities or cash; i.e. does not short equities) can be thought of as a 100% passive allocation to a 50/50 portfolio of stocks and cash plus a 50% overlay allocation to a long/short trend equity strategy that can move between fully short and fully long equities. This overlay component is portable beta.
We have also written previously about how a portable beta overlay of bonds can be beneficial to trend equity strategies – or even passive equity investments, for that matter. For example, 95% of a portfolio could be invested in a trend equity strategy, and the remaining 5% could be set aside as collateral to initiate a 60% overlay to 10-year U.S. Treasury futures. This approximates a 60/40 portfolio that is leveraged by 50%
Source: Newfound. Allocations are hypothetical and for illustrative purposes only.
Since this bond investment introduces interest rate risk, we have proposed ways to manage risk in this specific sleeve using factors such as value, carry, and momentum. By treating these factors as fully tactical long/short portfolios themselves, if we hold them in equal weight, we can also break down the tactical U.S. Treasury futures overlay into active and passive components, with a 30% passive position in U.S. Treasury futures and 10% in each of the factor-based strategies.
Source: Newfound. Allocations are hypothetical and for illustrative purposes only.
When each overlay is fully invested, the portfolio will hold 95% stocks, 5% cash, and 60% U.S. Treasury futures. When all the overlays are fully short, the strategy will be fully invested in cash with no bond overlay position.
While the strategy has not changed at all with this slicing and dicing, we now have a framework to explore the historical contributions of the active and passive components and the potential diversification benefits that they offer.
Diversification Among Components
For the passive portfolio 50/50 stock/cash, we will use a blend of the Vanguard Total U.S. stock market ETF (VTI) and the iShares Short-term Treasury Bond ETF (SHV) with Kenneth French data for market returns and the risk-free rate prior to ETF inception.
For the active L/S Trend Equity portfolio, we will use a long/short version of the Newfound U.S. Trend Equity Index.
The passive 10-year U.S. Treasury futures is the continuous futures contract with a proxy of the 10-year constant maturity Treasury index minus the cash index used before inception (January 2000). The active long/short bond factors can be found on the U.S. Treasuries section of our quantitative signals dashboard, which is updated frequently.
All data starts at the common inception point in May 1957.
As a technical side note, we must acknowledge that a constant maturity 10-year U.S. Treasury index minus a cash index will not precisely match the returns of 10-year U.S. Treasury futures. The specification of the futures contracts state that the seller of such a contract has the right to deliver any U.S. Treasury bond with maturity between 6.5 and 10 years. In other words, buyers of this contract are implicitly selling an option, knowing that the seller of the contract will likely choose the cheapest bond to deliver upon maturity (referred to as the “cheapest to deliver”). Based upon the specification and current interest rate levels, that current cheapest to deliver bond tends to have a maturity of 6.5 years.
This has a few implications. First, when you buy U.S. Treasury futures, you are selling optionality. Finance 101 will teach you that optionality has value, and therefore you would expect to earn some premium for selling it. Second, the duration profile between our proxy index and 10-year U.S. Treasury futures has meaningfully diverged in the recent decade. Finally, the roll yield harvested by the index and the futures will also diverge, which can have a non-trivial impact upon returns.
Nevertheless, we believe that for the purposes of this study, the proxy index is sufficient for broad, directional attribution and understanding.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
The 50/50 Stock/Cash portfolio is the only long-only holding. While the returns are lower for all the other strategies, we must keep in mind that they are all overlays that can add to the 50/50 portfolio rather than simply de-risk and cannibalize its return.
This is especially true since these overlay strategies have exhibited low correlation to the 50/50 portfolio.
The table below shows the full period correlation of monthly returns for all the portfolio components. The equity and bond sub-correlation matrices are outlined to highlight the internal diversification.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Not only do all of the overlays have low correlation to the 50/50 portfolio, but they generally exhibit low cross-correlations. Of the overlays, the L/S bond carry and L/S bond momentum strategies have the highest correlation (0.57), and the L/S bond carry and passive bond overlay have the next highest correlation (0.47).
The bond strategies have also exhibited low correlation to the equity strategies. This results in good performance, both absolute and risk-adjusted, relative to a benchmark 60/40 portfolio and a benchmark passive 90/60 portfolio.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Finding the Optimal Blend
Up to this point, we have only considered the fixed allocations to each of the active and passive strategies outlined at the beginning. But these may not be the optimal holdings.
Using a block-bootstrap method to simulate returns, we can utilize mean-variance optimization to determine the optimal portfolios for given volatility levels.1 This yields a resampled historical realized efficient frontier.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Plotting the benchmark 60/40, benchmark 90/60, and the tactical 90/60 on this efficient frontier, we see that the tactical 90/60 lies very close to the frontier at about 11.5% volatility. The allocations for the frontier are shown below.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
As expected, the lower volatility portfolios hold more cash and the high volatility portfolios hold more equity. For the 9% volatility level, these two allocations match, leading to the full allocation to a 50/50 stock/cash blend as in the tactical 90/60.
The passive allocation to the Treasury futures peaks at about 60%, while the L/S bond factor allocations are generally between 5% and 20% with more emphasis on Value and typically equal emphasis on Carry and Momentum.
The allocations in the point along the efficient frontier that matches the tactical 90/60 portfolio’s volatility are shown below.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
In this portfolio, we see a higher allocation to passive equities, a smaller position in the tactical equity L/S, and a larger position in passive Treasury futures. However, given the resampled nature of the process, these allocations are not wildly far away from the tactical 90/60.
The differences in the allocations are borne out in the Ulcer Index risk metric, which quantifies the severity and duration of drawdowns.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
The efficient frontier portfolio has a lower Ulcer Index than that of the tactical 90/60 even though their returns and volatility are similar. However, the Ulcer index of the tactical 90/60 is very close to that of the benchmark 60/40.
These differences are likely due to the larger allocation to the tactical equity long/short which can experience whipsaws (e.g. in October 1987), the lower allocation to passive U.S. equities, and the lower allocation to the Treasury overlay.
In an uncertain future, there can be significant risk in relying too much on the past, but having this framework can be useful for gaining a deeper understanding of which market environments benefit or hurt each component within the portfolio and how they diversify each other when held together.
Conclusion
In this research note, we explored diversification in a long/flat tactical equity strategy with a portable beta bond overlay. By decomposing the strategy into its passive holdings (50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we found that each of the overlays has historically exhibited low correlation to the passive portfolios and low cross-correlations to each other. Combining all of these strategies using a tactical 90/60 portfolio has led to strong performance on both an absolute and risk-adjusted basis.
Using these strategy components, we constructed an efficient frontier of portfolios and also found that the “intuitive” tactical 90/60 portfolio that we have used in much of our portable beta research is close to the optimal portfolio for its volatility level. While this does not guarantee that this portfolio will be optimal over any given time period, it does provide evidence for the robustness of the multi-factor risk-managed approach.
Utilizing portable beta strategies can be an effective way for investors to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk. While leverage can introduce risks of its own, relying on diversification and robust risk-management methods (e.g. trend following) can mitigate the risk of large losses.
The fear of using leverage and derivatives may be an uphill battle for investors, and there are a few operational burdens to overcome, but when used appropriately, these tools can make portfolios work harder and lead to more flexibility for allocating to additional opportunities.
If you are interested in learning how Newfound applies the concepts of tactical portable beta to its mandates, please reach out (info@thinknewfound.com).
Ensembles and Rebalancing
By Corey Hoffstein
On February 24, 2020
In Portfolio Construction, Weekly Commentary
This post is available as a PDF download here.
Summary
Two weeks ago, we wrote about the idea of payoff diversification. The notion is fairly trivial, though we find it is often overlooked. Put simply, any and all trading decisions – even something as trivial as rebalancing – create a “payoff profile.” These profiles often fall into two categories: concave strategies that do well in stable environments is maintained and convex strategies that do better in the tails.
For example, we saw that rebalancing a 60/40 stock/bond portfolio earned a premium against a buy-and-hold approach when the spread between stock and bond returns remained narrow. Conversely, when the spread in return between stocks and bonds was wide, rebalancing created a drag on returns. This is a fairly trivial and obvious conclusion, but we believe it is important for investors to understand these impacts and why payoff is a meaningful axis of diversification.
In our prior study, we compared two different approaches to investing: strategic rebalancing and momentum investing. In this (very brief) study, we want to demonstrate that these results are also applicable when applied to different variations of the same strategy.
Specifically, we will look at two long/short trend following strategies applied to broad U.S. equities. When trend signals are positive, the strategy will be long U.S. equities and short the risk-free rate; when trend signals are negative the strategy will be short U.S. equities and long the risk-free rate. We will use a simple time-series momentum signal. The first model (“21D”) will evaluate trailing 21-day returns and hold for 1 day and the second model (“168D”) will evaluate trailing 168-day returns and holds for 14 days (with 14 overlapping portfolios).1 Both strategies implement a full skip day before allocating and assuming implementation at closing prices.
Source: Kenneth French Data Library. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. Past performance is not indicative of future results.
So, what happens if we create a portfolio that holds both of these strategies, allocating 50% of our capital to each? Readers of our prior note will likely be able to guess the answer easily: we create a concave payoff profile that depends upon the relative performance between the two strategies. How, specifically, that concave shape manifests will be path dependent, but will also depend upon the rebalance frequency. For example, below we plot the payoff profiles for the 50/50 blend rebalanced weekly and monthly.
Source: Kenneth French Data Library. Calculations by Newfound Research. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. Past performance is not indicative of future results.
If we stop thinking of these as two strategies applied to the same asset and just think of them as two assets, the results are fairly standard and intuitive. What is potentially appealing, however, is that the same literature and research that applies to the potential to create a rebalancing premium between assets can apply to a portfolio of strategies (whether a combination of distinct strategies, such as value and momentum, or an ensemble of the same strategy).
Below, we plot the annualized return of weekly rebalanced portfolios with different fixed-mix allocations to the 21D and 168D strategies. We can see that the curve peaks at approximately 45%, suggesting that a 45% allocation to the 21D strategy and a 55% allocation to the 168D strategy actually maximizes the compound annualized growth rate of the portfolio.
If we follow the process of Dubikovsky and Susinno (2017)2 to derive the optimal blend of these two assets – using the benefit of hindsight to measure their annualized returns (7.28% and 7.61% respectively), volatility (17.55% and 17.97% respectively), and correlation (0.1318) – we derive an optimal weight of 45.33%.
Perhaps somewhat surprisingly, even if the correlation between these two strategies was 0.9, the optimal blend would still recommend about 10% to the 21D variation. And, as extreme as it may seem, even if the annualized return of the 21D strategy was just 5.36% – a full 225 basis points below the 168D strategy – the optimal blend would still recommend about 10%. Diversification can create interesting opportunities to harvest return; at least, in expectation.
And, as we would expect, if we have no view as to a difference in return or volatility between the two specifications, we would end up with a recommended allocation of 50% to each.
Conclusion
While most studies on rebalancing consider the potential benefits of combining assets, we believe that these benefits are trivially extended to strategies. Not just different strategies, however, but even strategies of the same style.
In this brief note, we explore the payoff profile created by combining two naïve long/short trend following strategies applied to broad U.S. equities. Unsurprisingly, rebalancing a simple mixture of the two specifications creates a concave payoff that generally profits when the spread between the two strategies is narrow and loses when the spread is wide.
More interestingly, however, we demonstrate that by rebalancing a fixed-mix of the two strategies, we can generate a return that is greater than either strategy individually. We believe that this potential benefit of ensemble approaches has been mostly overlooked by existing literature and deserves further analysis.