In Return StackingTM: Strategies for Overcoming a Low Return Environment, we advocated for the addition of managed futures to traditionally allocated portfolios. We argued that managed futures’ low empirical correlation to both equities and bonds and its historically positive average returns makes it an attractive diversifier. More specifically, we recommended implementing managed futures as an overlay to a portfolio to avoid sacrificing exposure to core stocks and bonds.
The luxury of writing research is that we work in a “clean slate” environment. In the real world, however, investors and allocators must contemplate changes in the context of their existing portfolios. Investors rarely just hold pure beta exposure, and we must consider, therefore, not only how a managed futures overlay might interact with stocks and bonds, but also how it might interact with existing active tilts.
The most common portfolio tilt we see is towards value stocks (and, often, quality-screened value). With this in mind, we want to briefly explore whether stacking managed futures remains attractive in the presence of an existing value tilt.
Diversifying Value
If we are already allocated to value, one of our first concerns might be whether an allocation to managed futures actually provides a diversifying return stream. One of our primary arguments for including managed futures into a traditional stock/bond portfolio is its potential to hedge against inflationary pressures. However, there are arguments that value stocks do much of the same, acting as “low duration” stocks compared to their growth peers. For example, in 2022, the Russell 1000 Value outperformed the broader Russell 1000 by 1,145 basis points, offering a significant buoy during the throes of the largest bout of inflation volatility in recent history.
However, broader empirical evidence does not actually support the narrative that value hedges inflation (see, e.g., Baltussen, et al. (2022), Investing in Deflation, Inflation, and Stagflation Regimes) and we can see in Figure 1 that the long-term empirical correlations between managed futures and value is near-zero.
(Note that when we measure value in this piece, we will look at the returns of long-only value strategies minus the returns of broad equities to isolate the impact of the value tilt. As we recently wrote, a long-only value tilt can be effectively thought as long exposure to the market plus a portfolio that is long the over-weight positions and short the under-weight positions1. By subtracting the market return from long-only value, we isolate the returns of the active bets the tilt is actually taking.)
Figure 1: Excess Return Correlation
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Correlations, however, do not tell us about the tails. Therefore, we might also ask, “how have managed futures performed historically conditional upon value being in a drawdown?” As the past decade has shown, underperformance of value-oriented strategies relative to the broad market can make sticking to the strategy equally difficult.
Figure 2 shows the performance of the various value tilts as well as managed futures during periods when the value tilts realized a 10% or greater drawdown2.
Figure 2: Value Relative Drawdowns Greater than 10%
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
We can see that while managed futures may not have explicitly hedged the drawdown in value, its performance remained largely independent and accretive to the portfolio as a whole.
To drive the point of independence home, we can calculate the univariate regression coefficients between value implementations and managed futures. We find that the relationship between the strategies is statistically insignificant in almost all cases. Figure 3 shows the results of such a regression.
Figure 3: Univariate Regression Coefficients
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. *, **, and *** indicate statistical significance at the 0.05, 0.01, and 0.001 level. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
But How Much?
As our previous figures demonstrate, managed futures has historically provided a positively diversifying benefit in relation to value; but how can we thoughtfully integrate an overlay into an portfolio that wants to retain an existing value tilt?
To find a robust solution to this question, we can employ simulation techniques. Specifically, we block bootstrap 100,000 ten-year simulated returns from three-month blocks to find the robust information ratios and MAR ratios (CAGR divided by maximum drawdown) of the value-tilt strategies when paired with managed futures.
Figure 4 shows the information ratio frontier of these portfolios, and Figure 5 shows the MAR ratio frontiers.
Figure 4: Information Ratio Frontier
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Figure 5: MAR Ratio Frontier
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Under both metrics it becomes clear that a 100% tilt to either value or managed futures is not prudent. In fact, the optimal mix, as measured by either the Information Ratio or MAR Ratio, appears to be consistently around the 40/60 mark. Figure 6 shows the blends of value and managed futures that maximizes both metrics.
Figure 6: Max Information and MAR Ratios
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
In Figure 7 we plot the backtest of a 40% value / 60% managed futures portfolio for the different value implementations.
Figure 7: 40/60 Portfolios of Long/Short Value and Managed Futures
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
These numbers suggest that an investor who currently tilts their equity exposure towards value may be better off by only tilting a portion of their equity towards value and introducing a managed futures overlay onto their portfolio. For example, if an investor has a 60% stock and 40% bond portfolio and the 60% stock exposure is currently all value, they might consider moving 36% of it into passive equity exposure and introducing a 36% managed futures overlay.
Depending on how averse a client is to tracking error, we can plot how the tracking error changes depending on the degree of portfolio tilt. Figure 8 shows the estimated tracking error when introducing varying allocations to the 40/60 value/managed futures overlay.
Figure 8: Relationship between Value/Managed Futures Tilt and Tracking Error
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
For example, if we wanted to implement a tilt to a quality value strategy, but wanted a maximum tracking error of 3%, the portfolio might add an approximate allocation of 46% to the 40/60 value/managed futures overlay. In other words, 18% of their equity should be put into quality-value stocks and a 28% overlay to managed futures should be introduced.
Using the same example of a 60% equity / 40% bond portfolio as before, the 3% tracking error portfolio would hold 42% in passive equities, 18% in quality-value, 40% in bonds, and 28% in a managed futures overlay.
What About Other Factors?
At this point, it should be of no surprise that these results extend to the other popular equity factors. Figures 8 and 9 show the efficient information ratio and MAR ratio frontiers when we view portfolios tilted towards the Profitability, Momentum, Size, and Investment factors.
Figure 9: Information Ratio Frontier for Profitability, Momentum, Size, and Investment Tilts
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Figure 10: MAR Ratio Frontier for Profitability, Momentum, Size, and Investment Tilts
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Figure 11: Max Information and MAR Ratios for Profitability, Momentum, Size, and Investment Tilts
Source: Kenneth French Data Library, BarclayHedge. Calculations by Newfound Research. Performance is backtested and hypothetical. Performance is gross of all costs (including, but not limited to, advisor fees, manager fees, taxes, and transaction costs) unless explicitly stated otherwise. Performance assumes the reinvestment of all dividends. Past performance is not indicative of future results. See Appendix A for index definitions.
Once again, a 40/60 split emerges as a surprisingly robust solution, suggesting that managed futures has historically offered a unique, diversifying return to all equity factors.
Conclusion
Our analysis highlights the considerations surrounding the use of managed futures as a complement to a traditional portfolio with a value tilt. While value investing remains justifiably popular in real-world portfolios, our findings indicate that managed futures can offer a diversifying return stream that complements such strategies. The potential for managed futures to act as a hedge against inflationary pressures, while also offering a diversifying exposure during relative value drawdowns, strengthens our advocacy for their inclusion through a return stackingTM framework.
Our examination of the correlation between managed futures and value reveals a near-zero relationship, suggesting that managed futures can provide distinct benefits beyond those offered by a value-oriented approach alone. Moreover, our analysis demonstrates that a more conservative tilt to value, coupled with managed futures, may be a prudent choice for inverse to tracking error. This combination offers the potential to navigate unfavorable market environments and potentially holds more of a portfolio benefit than a singular focus on value.
Appendix A: Index Definitions
Book to Market – Equal-Weighted HiBM Returns for U.S. Equities (Kenneth French Data Library)
Profitability – Equal-Weighted HiOP Returns for U.S. Equities (Kenneth French Data Library)
Momentum – Equal-Weighted Hi PRIOR Returns for U.S. Equities (Kenneth French Data Library)
Size – Equal-Weighted SIZE Lo 30 Returns for U.S. Equities (Kenneth French Data Library)
Investment – Equal-Weighted INV Lo 30 Returns for U.S. Equities (Kenneth French Data Library)
Earnings Yield – Equal-Weighted E/P Hi 10 Returns for U.S. Equities (Kenneth French Data Library)
Cash Flow Yield – Equal-Weighted CF/P Hi 10 Returns for U.S. Equities (Kenneth French Data Library)
Dividend Yield – Equal-Weighted D/P Hi 10 Returns for U.S. Equities (Kenneth French Data Library)
Quality Value – Equal-Weighted blend of BIG HiBM HiOP, ME2 BM4 OP3, ME2 BM3 OP3, and ME2 BM3 OP4 Returns for U.S. Equities (Kenneth French Data Library)
Value Blend – An equal-weighted Returns of Book to Market, Earnings Yield, Cash Flow Yield, and Dividend Yield returns for U.S. Equities (Kenneth French Data Library)
Passive Equities (Market, Mkt) – U.S. total equity market return data from Kenneth French Library.
Managed Futures – BTOP50 Index (BarclayHedge). The BTOP50 Index seeks to replicate the overall composition of the managed futures industry with regard to trading style and overall market exposure. The BTOP50 employs a top-down approach in selecting its constituents. The largest investable trading advisor programs, as measured by assets under management, are selected for inclusion in the BTOP50. In each calendar year the selected trading advisors represent, in aggregate, no less than 50% of the investable assets of the Barclay CTA Universe.
Diversification with Portable Beta
By Nathan Faber
On February 18, 2020
In Craftsmanship, Portfolio Construction, Risk & Style Premia, Risk Management, Weekly Commentary
This post is available as a PDF download here.
Summary
Portable beta strategies seek to enhance returns by overlaying an existing portfolio strategy with complementary exposure to diversifying asset classes and strategies. In overlaying exposure on an existing portfolio strategy, portable beta strategies seek to make every invested dollar work harder. This idea can create “capital efficiency” for investors, freeing up dollars in an investor’s portfolio to invest in other asset classes or investment opportunities.
At Newfound, we focus on managing risk. Trend following – or absolute momentum – is a key approach we employ do this, especially in equities. Trend equity strategies are a class of strategies that aim to harvest the long-term benefits of the equity risk premium while managing downside risk through the application of trend following.
We wrote previously how a trend equity strategy can be decomposed into passive and active components in order to isolate different contributors to performance. There is more than one way to do this, but in the most symmetric formulation, a “long/flat” trend equity strategy (one that that either holds equities or cash; i.e. does not short equities) can be thought of as a 100% passive allocation to a 50/50 portfolio of stocks and cash plus a 50% overlay allocation to a long/short trend equity strategy that can move between fully short and fully long equities. This overlay component is portable beta.
We have also written previously about how a portable beta overlay of bonds can be beneficial to trend equity strategies – or even passive equity investments, for that matter. For example, 95% of a portfolio could be invested in a trend equity strategy, and the remaining 5% could be set aside as collateral to initiate a 60% overlay to 10-year U.S. Treasury futures. This approximates a 60/40 portfolio that is leveraged by 50%
Source: Newfound. Allocations are hypothetical and for illustrative purposes only.
Since this bond investment introduces interest rate risk, we have proposed ways to manage risk in this specific sleeve using factors such as value, carry, and momentum. By treating these factors as fully tactical long/short portfolios themselves, if we hold them in equal weight, we can also break down the tactical U.S. Treasury futures overlay into active and passive components, with a 30% passive position in U.S. Treasury futures and 10% in each of the factor-based strategies.
Source: Newfound. Allocations are hypothetical and for illustrative purposes only.
When each overlay is fully invested, the portfolio will hold 95% stocks, 5% cash, and 60% U.S. Treasury futures. When all the overlays are fully short, the strategy will be fully invested in cash with no bond overlay position.
While the strategy has not changed at all with this slicing and dicing, we now have a framework to explore the historical contributions of the active and passive components and the potential diversification benefits that they offer.
Diversification Among Components
For the passive portfolio 50/50 stock/cash, we will use a blend of the Vanguard Total U.S. stock market ETF (VTI) and the iShares Short-term Treasury Bond ETF (SHV) with Kenneth French data for market returns and the risk-free rate prior to ETF inception.
For the active L/S Trend Equity portfolio, we will use a long/short version of the Newfound U.S. Trend Equity Index.
The passive 10-year U.S. Treasury futures is the continuous futures contract with a proxy of the 10-year constant maturity Treasury index minus the cash index used before inception (January 2000). The active long/short bond factors can be found on the U.S. Treasuries section of our quantitative signals dashboard, which is updated frequently.
All data starts at the common inception point in May 1957.
As a technical side note, we must acknowledge that a constant maturity 10-year U.S. Treasury index minus a cash index will not precisely match the returns of 10-year U.S. Treasury futures. The specification of the futures contracts state that the seller of such a contract has the right to deliver any U.S. Treasury bond with maturity between 6.5 and 10 years. In other words, buyers of this contract are implicitly selling an option, knowing that the seller of the contract will likely choose the cheapest bond to deliver upon maturity (referred to as the “cheapest to deliver”). Based upon the specification and current interest rate levels, that current cheapest to deliver bond tends to have a maturity of 6.5 years.
This has a few implications. First, when you buy U.S. Treasury futures, you are selling optionality. Finance 101 will teach you that optionality has value, and therefore you would expect to earn some premium for selling it. Second, the duration profile between our proxy index and 10-year U.S. Treasury futures has meaningfully diverged in the recent decade. Finally, the roll yield harvested by the index and the futures will also diverge, which can have a non-trivial impact upon returns.
Nevertheless, we believe that for the purposes of this study, the proxy index is sufficient for broad, directional attribution and understanding.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
The 50/50 Stock/Cash portfolio is the only long-only holding. While the returns are lower for all the other strategies, we must keep in mind that they are all overlays that can add to the 50/50 portfolio rather than simply de-risk and cannibalize its return.
This is especially true since these overlay strategies have exhibited low correlation to the 50/50 portfolio.
The table below shows the full period correlation of monthly returns for all the portfolio components. The equity and bond sub-correlation matrices are outlined to highlight the internal diversification.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Not only do all of the overlays have low correlation to the 50/50 portfolio, but they generally exhibit low cross-correlations. Of the overlays, the L/S bond carry and L/S bond momentum strategies have the highest correlation (0.57), and the L/S bond carry and passive bond overlay have the next highest correlation (0.47).
The bond strategies have also exhibited low correlation to the equity strategies. This results in good performance, both absolute and risk-adjusted, relative to a benchmark 60/40 portfolio and a benchmark passive 90/60 portfolio.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Finding the Optimal Blend
Up to this point, we have only considered the fixed allocations to each of the active and passive strategies outlined at the beginning. But these may not be the optimal holdings.
Using a block-bootstrap method to simulate returns, we can utilize mean-variance optimization to determine the optimal portfolios for given volatility levels.1 This yields a resampled historical realized efficient frontier.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
Plotting the benchmark 60/40, benchmark 90/60, and the tactical 90/60 on this efficient frontier, we see that the tactical 90/60 lies very close to the frontier at about 11.5% volatility. The allocations for the frontier are shown below.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
As expected, the lower volatility portfolios hold more cash and the high volatility portfolios hold more equity. For the 9% volatility level, these two allocations match, leading to the full allocation to a 50/50 stock/cash blend as in the tactical 90/60.
The passive allocation to the Treasury futures peaks at about 60%, while the L/S bond factor allocations are generally between 5% and 20% with more emphasis on Value and typically equal emphasis on Carry and Momentum.
The allocations in the point along the efficient frontier that matches the tactical 90/60 portfolio’s volatility are shown below.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
In this portfolio, we see a higher allocation to passive equities, a smaller position in the tactical equity L/S, and a larger position in passive Treasury futures. However, given the resampled nature of the process, these allocations are not wildly far away from the tactical 90/60.
The differences in the allocations are borne out in the Ulcer Index risk metric, which quantifies the severity and duration of drawdowns.
Source: Kenneth French Data Library, Federal Reserve Bank of St. Louis, Tiingo, Stevens Futures. Calculations by Newfound Research. Data is from May 1957 to January 2020. Returns are hypothetical and assume the reinvestment of all distributions. Returns are gross of all fees, including, but not limited to, management fees, transaction fees, and taxes. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses or sales charges. Past performance is not indicative of future results.
The efficient frontier portfolio has a lower Ulcer Index than that of the tactical 90/60 even though their returns and volatility are similar. However, the Ulcer index of the tactical 90/60 is very close to that of the benchmark 60/40.
These differences are likely due to the larger allocation to the tactical equity long/short which can experience whipsaws (e.g. in October 1987), the lower allocation to passive U.S. equities, and the lower allocation to the Treasury overlay.
In an uncertain future, there can be significant risk in relying too much on the past, but having this framework can be useful for gaining a deeper understanding of which market environments benefit or hurt each component within the portfolio and how they diversify each other when held together.
Conclusion
In this research note, we explored diversification in a long/flat tactical equity strategy with a portable beta bond overlay. By decomposing the strategy into its passive holdings (50/50 stock/bond portfolio and U.S. Treasury futures) and active long/short overlays (trend equity, bond carry, bond momentum, and bond value), we found that each of the overlays has historically exhibited low correlation to the passive portfolios and low cross-correlations to each other. Combining all of these strategies using a tactical 90/60 portfolio has led to strong performance on both an absolute and risk-adjusted basis.
Using these strategy components, we constructed an efficient frontier of portfolios and also found that the “intuitive” tactical 90/60 portfolio that we have used in much of our portable beta research is close to the optimal portfolio for its volatility level. While this does not guarantee that this portfolio will be optimal over any given time period, it does provide evidence for the robustness of the multi-factor risk-managed approach.
Utilizing portable beta strategies can be an effective way for investors to pursue capital efficiency and maximize portfolio returns while simultaneously managing risk. While leverage can introduce risks of its own, relying on diversification and robust risk-management methods (e.g. trend following) can mitigate the risk of large losses.
The fear of using leverage and derivatives may be an uphill battle for investors, and there are a few operational burdens to overcome, but when used appropriately, these tools can make portfolios work harder and lead to more flexibility for allocating to additional opportunities.
If you are interested in learning how Newfound applies the concepts of tactical portable beta to its mandates, please reach out (info@thinknewfound.com).