The Research Library of Newfound Research

Category: Portfolio Construction Page 9 of 10

Tax-Managed Models & Asset Location

This post is available for download as a PDF here.

Summary­­

  • In a world of anemic asset returns, tax management may help significantly contribute to improving portfolio returns.
  • Ideally, asset location decisions would be made with full investor information, including goals, risk tolerances, tax rates, and distribution of wealth among account types.
  • Without perfect information, we believe it is helpful to have both tax-deferred and tax-managed model portfolios available.
  • We explore how tax-adjusted expected returns can be created, and how adjusting for taxes affects an optimized portfolio given today’s market outlook.

Before we begin, please note that we are not Certified Public Accountants, Tax Attorneys, nor do we specialize in tax management.  Tax law is complicated and this commentary will employ sweeping generalizations and assumptions that will certainly not apply to every individual’s specific situation.  This commentary is not meant as advice, simply research.  Before making any tax-related changes to your investment process, please consult an expert.

Tax-Managed Thinking

We’ve been writing a lot, recently, about the difficulties investors face going forward.[1][2][3]  It is our perspective that the combination of higher-than-average valuations in U.S. stocks and low interest rates in core U.S. bonds indicates a muted return environment for traditionally allocated investors going forward.

There is no silver bullet to this problem.  Our perspective is that investors will likely have to work hard to make many marginal, but compounding, improvements.  Improvements may include reducing fees, thinking outside of traditional asset classes, saving more, and, for investors in retirement, enacting a dynamic withdrawal plan.

Another potential opportunity is in tax management.

I once heard Dan Egan, Director of Behavioral Finance at Betterment, explain tax management as an orthogonal improvement: i.e. one which could seek to add value regardless of how the underlying portfolio performed.  I like this description for two reasons.

First, it fits nicely into our framework of compounding marginal improvements that do not necessarily require just “investing better.”  Second, Dan is the only person, besides me, to use the word “orthogonal” outside of a math class.

Two popular tax management techniques are tax-loss harvesting and asset location.  While we expect that tax-loss harvesting is well known to most (selling investments at a loss to offset gains taken), asset location may be less familiar.  Simply put, asset location is how investments are divided among different accounts (taxable, tax-deferred, and tax-exempt) in an effort to maximize post-tax returns.

Asset Location in a Perfect World

Taxes are a highly personal subject.  In a perfect world, asset location optimization would be applied to each investor individually, taking into account:

  • State tax rates
  • Federal tax rates
  • Percentage of total assets invested in each account type

Such information would allow us to run a very simple portfolio optimization that could take into account asset location.

Simply, for each asset, we would have three sets of expected returns: an after-tax expected return, a tax-deferred expected return, and a tax-exempt expected return.  For all intents and purposes, the optimizer would treat these three sets of returns as completely different asset classes.

So, as a simple example, let’s assume we only want to build a portfolio of U.S. stocks and bonds.  For each, we would create three “versions”: Taxable, Tax-Deferred, and Tax-Exempt.  We would calculate expected returns for U.S. Stocks – Taxable, U.S. Stocks – Tax-Deferred, and U.S. Stocks – Tax-Exempt.  We would do the same for bonds.

We would then run a portfolio optimization.  To the optimizer, it would look like six asset classes instead of two (since there are three versions of stocks and bonds).  We would add the constraint that the sum of the weights to Taxable, Tax-Deferred, and Tax-Exempt groups could not exceed the percentage of our wealth in each respective account type.  For example, if we only have 10% of our wealth in Tax-Exempt accounts, then U.S. Stocks – Tax Exempt + U.S. Bonds – Tax Exempt must be equal to 10%.

Such an approach allows for the explicit consideration of an individual’s tax rates (which are taken into account in the adjustment of expected returns) as well as the distribution of their wealth among different account types.

Case closed.[4]

Asset Location in a Less Than Perfect World

Unfortunately, the technology – and expertise – required to enable such an optimization is not readily available for many investors.

As an industry, the division of labor can significantly limit the availability of important information.  While financial advisors may have access to an investor’s goals, risk tolerances, specific tax situation, and asset location break-down, asset managers do not.  Therefore, asset managers are often left to make sweeping assumptions, like infinite investment horizons, defined and constant risk tolerances, and tax indifference.

Indeed, we currently make these very assumptions within our QuBe model portfolios. Yet, we think we can do better.

For example, consider investors at either end of the spectrum of asset location.  On the one end, we have investors with the vast majority of their assets in tax-deferred accounts.  On the other, investors with the vast majority of their wealth in taxable accounts.  Even if two investors at opposite ends of the spectrum have an identical risk tolerance, their optimal portfolios are likely different.  Painting with broad strokes, the tax-deferred investor can afford to have a larger percentage of their assets in tax-inefficient asset classes, like fixed income and futures-based alternative strategies.  The taxable investor will likely have to rely more heavily on tax-efficient investments, like indexed equities (or active equities, if they are in an ETF wrapper).

Things get much messier in the middle of the spectrum.  We believe investors have two primary options:

  1. Create an optimal tax-deferred portfolio and try to shift tax-inefficient assets into the tax-deferred accounts and tax-efficient assets into taxable accounts. Investor liquidity needs need to be carefully considered here, as this often means that taxable accounts will be more heavily tilted towards more volatile equities while bonds will fall into tax-deferred accounts.
  2. Create an optimal tax-deferred portfolio and an optimal taxable portfolio, and invest in each account accordingly. This is, decidedly, sub-optimal to asset location in a perfect world, and should even under most scenarios be sub-optimal to Option #1, but it should be preferable to simply ignoring taxes.  Furthermore, it may be easier from an implementation perspective, depending on the rebalancing technology available to you.

With all this in mind, we have begun to develop tax-managed versions of our QuBe model portfolios, and expect them to be available at the beginning of Q4.

Adjusting Expected Returns for Taxes

To keep this commentary to a reasonable length (as if that has ever stopped us before…), we’re going to use a fairly simple model of tax impact.

At the highest level, we need to break down our annual expected return into three categories: unrealized, externally realized, and internally realized.

  • Unrealized: The percentage of the total return that remains un-taxed. For example, the expected return of a stock that is bought and never sold would be 100% unrealized (ignoring, for a moment, dividends and end-of-period liquidation).
  • Externally Realized: The percentage of total return that is taxed due to asset allocation turnover. For example, if we re-optimize our portfolio annually and incur 20% turnover, causing us to sell positions, we would say that 20% of expected return is externally realized.
  • Internally Realized: The percentage of total return that comes from internal turnover, or income generated, within our investment. For example, the expected return from a bond may be 100% internally realized.  Similarly, a very active hedge fund strategy may have a significant amount of internal turnover that realizes gains.

Using this information, we can fill out a table, breaking down for each asset class where we expect returns to come from as well as within that category, what type of tax-rate we can expect.  For example:

For example, in the table above we are saying we expect 70% of our annual U.S. equity returns to be unrealized while 30% of them will be realized at a long-term capital gains rate.  Note that we also explicitly estimate what we will be receiving in qualified dividends.

On the other hand, we only expect that 35% of our hedge fund returns to be unrealized, while 15% will be realized from turnover (all at a long-term capital gains rate) and the remaining 50% will be internally realized by trading within the fund, split 40% short-term capital gains and 60% long-term capital gains.For example, in the table above we are saying we expect 70% of our annual U.S. equity returns to be unrealized while 30% of them will be realized at a long-term capital gains rate.  Note that we also explicitly estimate what we will be receiving in qualified dividends.

Obviously, there is a bit of art in these assumptions.  How much the portfolio turns over within a year must be estimated.  What types of investments you are making will also have an impact.  For example, if you are investing in ETFs, even very active equity strategies can be highly tax efficient.  Mutual funds on the other hand, potentially less so.  Whether a holding like Gold gets taxed at a Collectible rate or a split between short- and long-term capital gains will depend on the fund structure.

Using this table, we can then adjust the expected return for each asset class using the following equations:

Where,

In English,

  • Take the pre-tax return and subtract out the amount we expect to come from qualified dividend yield.
  • Take the remainder and multiply it by the total blended tax rate we expect from externally and internally realized gains.
  • Add back in the qualified dividend yield, after adjusting for returns.

As a simple example, let’s assume U.S. equities have a 6% expected return.  We’ll assume a 15% qualified dividend rate and a 15% long-term capital gains rate.  We’ll ignore state taxes for simplicity.

Our post-tax expected return is, therefore 6% – (6%-2%)*(30%*15%) – 2%*15% = 5.52%.

We can follow the same broad steps for all asset classes, making some assumptions about tax rates and expected sources of realized returns.

(For those looking to take a deeper dive, we recommend Betterment’s Tax-Coordinated Portfolio whitepaper[5], Ashraf Al Zaman’s Tax Adjusted Portfolio Optimization and Asset Location presentation[6], and Geddes, Goldberg, and Bianchi’s What Would Yale Do If It Were Taxable? paper[7].)

 

How Big of a Difference Does Tax Management Make?

So how much of a difference does taking taxes into account really make in the final recommended portfolio?

We explore this question by – as we have so many times in the past – relying on J.P. Morgan’s capital market assumptions.  The first portfolio is constructed using the same method we have used in the past: a simulation-based mean-variance optimization that targets the same risk level as a 60% stock / 40% bond portfolio mix.

For the second portfolio, we run the same optimization, but adjust the expected return[8] for each asset class.

We make the following assumptions about the source of realized returns and tax rates for each asset class (note that we have compressed the above table by combining rates together after multiplying for the amount realized by that category; e.g. realized short below represents externally and internally realized short-term capital gains).

Again, the construction of the below table is as much art as it is science, with many assumptions embedded about the type of turnover the portfolio will have and the strategies that will be used to implement it.

 

CollectibleOrdinary IncomeRealized ShortRealized LongUnrealizedDividend
Alternative – Commodities0%0%10%20%70%0%
Alternative – Event Driven0%0%26%53%21%0%
Alternative – Gold30%0%0%0%70%0%
Alternative – Long Bias0%0%26%53%21%1%
Alternative – Macro0%0%26%53%21%0%
Alternative – Relative Value0%0%26%53%21%0%
Alternative – TIPS0%100%0%0%0%0%
Bond – Cash0%100%0%0%0%0%
Bond – Govt (Hedged) ex US0%100%0%0%0%0%
Bond – Govt (Not Hedged) ex US0%100%0%0%0%0%
Bond – INT Treasuries0%100%0%0%0%0%
Bond – Investment Grade0%100%0%0%0%0%
Bond – LT Treasuries0%100%0%0%0%0%
Bond – US Aggregate0%100%0%0%0%0%
Credit – EM Debt0%100%0%0%0%0%
Credit – EM Debt (Local)0%100%0%0%0%0%
Credit – High Yield0%100%0%0%0%0%
Credit – Levered Loans0%100%0%0%0%0%
Credit – REITs0%100%0%0%0%0%
Equity – EAFE0%0%10%20%70%2%
Equity – EM0%0%10%20%70%2%
Equity – US Large0%0%10%20%70%2%
Equity – US Small0%0%10%20%70%2%

We also make the following tax rate assumptions:

  • Ordinary Income: 28%
  • Short-Term Capital Gains: 28%
  • Long-Term Capital Gains: 28%
  • Qualified Dividend: 15%
  • Collectibles: 28%
  • Ignore state-level taxes.

The results of both optimizations can be seen in the table below.

 

Tax-DeferredTax-Managed
Equity – US Large3.9%5.3%
Equity – US Small5.9%7.0%
Equity – EAFE3.3%4.8%
Equity – Emerging Markets11.1%12.0%
Sum24.2%29.1%
Bond – US Aggregate0.1%0.1%
Bond – Int US Treasuries0.6%0.4%
Bond – LT US Treasuries12.4%12.2%
Bond – Investment Grade0.0%0.0%
Bond – Govt (Hedged) ex US0.3%0.1%
Bond – Govt (Not Hedged) ex US0.3%0.2%
Sum13.8%13.1%
Credit – High Yield6.2%3.9%
Credit – Levered Loans11.8%8.9%
Credit – EM Debt4.2%2.7%
Credit – EM Debt (Local)5.2%3.5%
Credit – REITs8.6%8.1%
Sum36.0%27.1%
Alternative – Commodities4.0%3.9%
Alternative – Gold11.3%13.9%
Alternative – Macro6.8%8.6%
Alternative – Long Bias0.1%0.1%
Alternative – Event Driven1.6%2.2%
Alternative – Relative Value0.5%1.3%
Alternative – TIPS1.6%0.8%
Sum26.0%30.8%

 

Broadly speaking, we see a shift away from credit-based asset classes (though, they still command a significant 27% of the portfolio) and towards equity and alternatives.

We would expect that if the outlook for equities improved, or we reduced the expected turnover within the portfolio, this shift would be even more material.

It is important to note that at least some of this difference can be attributed to the simulation-based optimization engine.  Percentages can be misleading in their precision: the basis point differences between assets within the bond category, for example, are not statistically significant changes.

And how much difference does all this work make?  Using our tax-adjusted expected returns, we estimate a 0.20% increase in expected return between tax-managed and tax-deferred versions right now.  As we said: no silver bullets, just marginal improvements.

What About Municipal Bonds?

You may have noticed municipal bonds are missing from the above example.  What gives?

Part of the answer is theoretical.  Consider the following situation.  You have two portfolios that are identical in every which way (e.g. duration, credit risk, liquidity risk, et cetera), except one is comprised of municipal bonds and one of corporate bonds.  Which one do you choose?

The one with the higher post-tax yield, right?

This hypothetical highlights two important considerations.  First, the idea that municipal bonds are for taxable accounts and corporate bonds are for tax-deferred accounts overlooks the fact that investors should be looking to maximize post-tax return regardless of asset location.  If municipal bonds offer a better return, then put them in both accounts!  Similarly, if corporate bonds offer a more attractive return after taxes, then they should be held in taxable accounts.

For example, right now the iShares iBoxx $ Investment Grade Corporate Bond ETF (LQD) has a 30-day SEC yield of 3.16%.  The VanEck Vectors ATM-Free Intermediate Municipal Index ETF (ITM) has a 30-day SEC yield of just 1.9%.  However, this is the taxable equivalent to an investor earning a 3.15% yield at a 39.6% tax rate.

In other words, LQD and ITM offer a nearly identical return within in a taxable account for an investor in the highest tax bracket.  Lower tax brackets imply lower taxable equivalent return, meaning that LQD may be a superior investment for these investors.  (Of course, we should note that municipal bonds are not corporate bonds.  They often are often less liquid, but of higher credit quality.)

Which brings up our second point: taxes are highly personal.  For a wealthy investor, an ordinary income tax of 35% could make municipal bonds far more attractive than they are for an investor only paying a 15% ordinary income tax rate.

Simply put: solving the when and where of municipal bonds is not always straight forward.  We believe the best approach is account for them as a standalone asset class within the optimization, letting the optimizer figure out how to maximize post-tax returns.

Conclusion

We believe that a low-return world means that many investors will have a tough road ahead when it comes to achieving their financial goals.  We see no silver bullet to this problem.  We do see, however, many small steps that can be taken that can compound upon each other to have a significant impact.  We believe that asset location provides one such opportunity and is therefore a topic that deserves far more attention in a low-return environment.

 


 

[1] See The Impact of High Equity Valuations on Safe Withdrawal Rates –   https://blog.thinknewfound.com/2017/08/impact-high-equity-valuations-safe-retirement-withdrawal-rates/

[2] See Portfolios in Wonderland & The Weird Portfolio – https://blog.thinknewfound.com/2017/08/portfolios-wonderland-weird-portfolio/

[3] See The Butterfly Effect in Retirement Planning – https://blog.thinknewfound.com/2017/09/butterfly-effect-retirement-planning/

[4] Clearly this glosses over some very important details.  For example, an investor that has significant withdrawal needs in the near future, but has the majority of their assets tied up in tax-deferred accounts, would significantly complicate this optimization.  The optimizer will likely put tax-efficient assets (e.g. equity ETFs) in taxable accounts, while less tax-efficient assets (e.g. corporate bonds) would end up in tax-deferred accounts.  Unfortunately, this would put the investor’s liquidity needs at significant risk.  This could be potentially addressed by adding expected drawdown constraints on the taxable account.

[5] https://www.betterment.com/resources/research/tax-coordinated-portfolio-white-paper/

[6] http://www.northinfo.com/documents/337.pdf

[7] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2447403

[8] We adjust volatility as well.

Building an Unconstrained Sleeve

We’re often asked about how to build an unconstrained sleeve in a portfolio.

Our view is that your mileage will largely vary by where you are trying to go.  With that in mind, we focus on three objectives:

  • Sleeves that seek to hedge equity losses.
  • Sleeves that seek significant equity upside capture while reducing downside.
  • Sleeves that seek an absolute return profile.

We explore how these sleeves can be built using common strategies such as tactical equity, minimum volatility equity, managed futures, risk parity, global contrarian, alternative income, and traditional U.S. Treasuries.

You can find the full presentation below.

 

(If the above slideshow is not working, you can view an online version here or download a PDF version here.)

 

Combining Tactical Views with Black-Litterman and Entropy Pooling

This post is available as a PDF download here

Summary­­

  • In last week’s commentary, we outline a number of problems faced by tactical asset allocators in actually implementing their views.
  • This week, we explore popular methods for translating a combination of strategic views and tactical views into a single, comprehensive set of views that can be used as the foundation of portfolio construction.
  • We explore Black-Litterman, which can be used to implement views on returns as well as the more recently introduced Entropy Pooling methodology of Meucci, which allows for more flexible views.
  • For practitioners looking to implement tactical views into a number of portfolios in a coherent manner, the creation of posterior capital market assumptions via these methods may be an attractive process.

Note: Last week’s commentary was fairly qualitative – and hopefully applicable for practitioners and non-practitioners alike.  This week’s is going to be a bit wonkier and is primarily aimed at those looking to express tactical views in an asset allocation framework.  We’ll try to keep the equations to a minimum, but if the question, “how do I create a posterior joint return distribution from a prior and a rank view of expected asset class returns?” has never crossed your mind, this might be a good week to skip.

In last week’s commentary, we touched upon some of the important details that can make the actual implementation and management of tactical asset allocation a difficult proposition.[1]  Specifically, we noted that:

  1. Establishing consistent measures across assets is hard (e.g. “what is fair value for a bond index and how does it compare to equities?”);
  2. There often are fewer bets being made, so position sizing is critical;
  3. Cross-asset dynamics create changing risk profiles for bets placed.
  4. Tactical decisions often explicitly forego diversification, increasing the hurdle rate.

We’ll even add a fifth, sixth, and seventh:

  1. Many attractive style premia (e.g. momentum, value, carry, and trend) trades require leverage or shorting. Many other tactical views (e.g. change in yield curve curvature or change in credit spreads) can require leverage and shorting to neutralize latent risk factors and allocate risk properly.
  2. Combining (potentially conflicting) tactical views is not always straight forward.
  3. Incorporating tactical views into a preexisting policy portfolio – which may include long-term strategic views or constraints – is not obvious.

This week, we want to address how points #2-7 can be addressed with a single comprehensive framework.[2]

What is Tactical Asset Allocation?

As we hinted in last week’s commentary, we’re currently smack dab in the middle of writing a book on systematic tactical asset allocation.

When we sat down to write, we thought we’d start at an obvious beginning: defining “what is tactical asset allocation?”

Or, at least, that was the plan.

As soon as we sat down to write, we got a case of serious writer’s block.  Which, candidly, gave us deep pause.  After all, if we struggled to even write down a succinct definition for what tactical asset allocation is, how in the world are we qualified to write a book about it?

Fortunately, we were eventually able to put digital ink to digital paper.  While our editor would not let us get away with a two sentence chapter, our thesis can be more or less boiled down to:

Strategic asset allocation is the policy you would choose if you thought risk premia were constant; tactical asset allocation is the changes you would make if you believe risk premia are time-varying.[3]

We bring this up because it provides us a mental framework for thinking about how to address problems #2 – 7.

Specifically, given prior market views (e.g. expected returns and covariances) that serve as the foundation to our strategic asset allocation, can our tactical views be used to create a posterior view that can then serve as the basis of our portfolio construction process? 

Enter Black-Litterman

Fortunately, we’re not the first to consider this question.  We missed that boat by about 27 years or so.

In 1990, Fischer Black and Robert Litterman developed the Black-Litterman model while working at Goldman Sachs. The model provides asset allocators with a framework to embed opinions and views about asset class returns into a prior set of return assumptions to arrive at a bespoke asset allocation.

Part of what makes the Black-Litterman model unique is that it does not ask the allocator to necessarily come up with a prior set of expected returns.  Rather, it relies on equilibrium returns – or the “market clearing returns” – that serve as a neutral starting point.  To find these returns, a reverse optimization method is utilized.

Here, R is our set of equilibrium returns, c is a risk aversion coefficient, S is the covariance matrix of assets, and w is the market-capitalization weights of those assets.

The notion is that in the absence of explicit views, investors should hold the market-capitalization weighted portfolio (or the “market portfolio”).  Hence, the return views implied by the market-capitalization weights should be our starting point.

Going about actually calculating the global market portfolio weights is no small feat.  Plenty of ink has been spilled on the topic.[4]  For the sake of brevity, we’re going to conveniently ignore this step and just assume we have a starting set of expected returns.

The idea behind Black-Litterman is to then use a Bayesian approach to combine our subjective views with these prior equilibrium views to create a posterior set of capital market assumptions.

Specifically, Black-Litterman gives us the flexibility to define:

  • Absolute asset class return views (e.g. “I expect U.S. equities to return 4%”)
  • Relative asset class return views (e.g. “I expect international equities to outperform U.S. equities by 2%”)
  • The confidence in our views

Implementing Black-Litterman

We implement the Black-Litterman approach by constructing a number of special matrices.

  • P: Our “pick matrix.” Each row tells us which asset classes we are expressing a view on.  We can think of each row as a portfolio.
  • Q: Our “view vector.” Each row tells us what our return view is for the corresponding row in the pick matrix.
  • O: Our “error matrix.” A diagonal matrix that represents the uncertainty in each of our views.

Given these matrices, our posterior set of expected returns is:

If you don’t know matrix math, this might be a bit daunting.

At the highest level, our results will be a weighted average of our prior expected returns (R) and our views (Q).  How do compute the weights?  Let’s walk through it.

  • t is a scalar. Generally, small.  We’ll come back to this in a moment.
  • S is the prior covariance matrix. Now, the covariance matrix represents the scale of our return distribution: i.e. how far away from the expectation that we believe our realized returns could fall. What we need, however, is some measure of uncertainty of our actual expected returns.  g. If our extracted equilibrium expected returns for stocks is 5%, how certain are we it isn’t actually supposed to be 4.9% or 5.1%? This is where t comes back.  We use a small t (generally between 0.01 and 0.05) to scale S to create our uncertainty estimate around the expected return. (tS)-1, therefore, is our certainty, or confidence, in our prior equilibrium returns.
  • If O is the uncertainty in our view on that portfolio, O-1 can be thought of as our certainty, or confidence, in each view.
    Each row of P is the portfolio corresponding to our view. P’O-1P, therefore, can be thought of as the transformation that turns view uncertainty into asset class return certainty.
  • Using our prior intuition of (tS)-1, (tS)-1R can be thought of as certainty-scaled prior expected returns.
  • Q represents our views (a vector of returns). O-1Q, therefore, can be thought of as certainty-scaled P’O-1Q takes each certainty-scaled view and translates it into cumulative asset-class views, scaled for the certainty of each view.

With this interpretation, the second term – (tS)-1R + P’O-1Q – is a weighted average of our prior expected returns and our views.  The problem is that we need the sum of the weights to be equal to 1.  To achieve this, we need to normalize.

That’s where the first term comes in.  (tS)-1 + P’O-1P is the sum of our weights.  Multiplying the second term by ((tS)-1 + P’O-1P)-1 is effectively like dividing by the sum of weights, which normalizes our values.

Similar math has been derived for the posterior covariance matrix as well, but for the sake of brevity, we’re going to skip it.  A Step- by-Step Guide to Black-Litterman by Thomas Idzorek is an excellent resource for those looking for a deeper dive.

Black-Litterman as a Solution to Tactical Asset Allocation Problems

So how does Black-Litterman help us address problems #2-7 with tactical asset allocation?

Let’s consider a very simple example.  Let’s assume we want to build a long-only bond portfolio blending short-, intermediate-, and long-term bonds.

For convenience, we’re going to make a number of assumptions:

  1. Constant durations of 2, 5, and 10 for each of the bond portfolios.
  2. Use current yield-to-worst of SHY, IEI, and IEF ETFs as forward expected returns. Use prior 60 months of returns to construct the covariance matrix.

This gives us a prior expected return of:

E[R]
SHY1.38%
IEI1.85%
IEF2.26%

And a prior covariance matrix,

SHYIEIIEF
SHY0.000050.0001770.000297
IEI0.0001770.0007990.001448
IEF0.0002970.0014480.002795

In this example, we want to express a view that the curvature of the yield curve is going to change.  We define the curvature as:

Increasing curvature implies the 5-year rate will go up and/or the 2-year and 10-year rates will go down.  Decreasing curvature implies the opposite.

To implement this trade with bonds, however, we want to neutralize duration exposure to limit our exposure to changes in yield curve level and slope.  The portfolio we will use to implement our curvature views is the following:

We also need to note that bond returns have an inverse relationship with rate change.  Thus, to implement an increasing curvature trade, we would want to short the 5-year bond and go long the 2- and 10-year bonds.

Let’s now assume we have a view that the curvature of the yield curve is going to increase by 50bps over the next year.  We take no specific view as to how this curvature increase will unfold (i.e. the 5-year rate rising by 50bps, the 5-year rate rising by 25bps and each of the 2-year and 10-year rates falling by 25bps, etc.).  This implies that the curvature bond portfolio return has an expected return of negative 5%.

Implementing this trade in the Black-Litterman framework, and assuming a 50% certainty of our trade, we end up with a posterior distribution of:

E[R]
SHY1.34%
IEI1.68%
IEF1.97%

And a posterior ovariance matrix,

SHYIEIIEF
SHY0.0000490.0001820.000304
IEI0.0001820.0008190.001483
IEF0.0003040.0014830.002864

We can see that while the expected return for SHY did not change much, the expected return for IEF dropped by 0.29%.

The use of this model, then, is that we can explicitly use views about trades we might not be able to make (due to leverage or shorting constraints) to alter our capital market assumptions, and then use our capital market assumptions to build our portfolio.

For global tactical style premia – like value, momentum, carry, and trend – we need to explicitly implement the trades.  With Black-Litterman, we can implement them as views, create a posterior return distribution, and use that distribution to create a portfolio that still satisfies our policy constraints.

The Limitations of Black-Litterman

Black-Litterman is a hugely powerful tool.  It does, however, have a number of limitations.  Most glaringly,

  • Returns are assumed to be normally distributed.
  • Expressed views can only be on returns.

To highlight the latter limitation, consider a momentum portfolio that ranks asset classes based on prior returns.  The expectation with such a strategy is that each asset class will outperform the asset class ranked below it.  A rank view, however, is inexpressible in a Black-Litterman framework.

Enter Flexible Views with Entropy Pooling

While a massive step forward for those looking to incorporate a variety of views, the Black-Litterman approach remains limited.

In a paper titled Fully Flexible Views: Theory and Practice[5], Attilio Meucci introduced the idea of leveraging entropy pooling to incorporate almost any view a practitioner could imagine.  Some examples include,

  • A prior that need not be normally distributed – or even be returns at all.
  • Non-linear functions and factors.
  • Views on the return distribution, expected returns, median returns, return ranks, volatilities, correlations, and even tail behavior.

Sounds great!  How does it work?

The basic concept is to use the prior distribution to create a large number of simulations.  By definition, each of these simulations occurs with equal probability.

The probability of each scenario is then adjusted such that all views are satisfied.  As there may be a number of such solutions, the optimal solution is the one that minimizes the relative entropy between the new distribution and the prior distribution.

How is this helpful?  Consider the rank problem we discussed in the last section.  To implement this with Meucci’s entropy pooling, we merely need to adjust the probabilities until the following view is satisfied:

Again, our views need not be returns based.  For example, we could say that we believe the volatility of asset A will be higher than asset B.  We would then just adjust the probabilities of the simulations until that is the case.

Of course, the accuracy of our solution will depend on whether we have enough simulations to accurately capture the distribution.  A naïve numerical implementation that seeks to optimize over the probabilities would be intractable.  Fortunately, Meucci shows that the problem can be re-written such that the number of variables is equal to the number of views.[6]

A Simple Entropy Pooling Example

To see entropy-pooling in play, let’s consider a simple example.  We’re going to use J.P. Morgan’s 2017 capital market assumptions as our inputs.

In this toy example, we’re going to have the following view: we expect high yield bonds to outperform US small-caps, US small-caps to outperform intermediate-term US Treasuries, intermediate-term US Treasuries will outperform REITs, and REITs will outperform gold.  Exactly how much we expect them to outperform by is unknown.  So, this is a rank view.

We will also assume that we are 100% confident in our view.

The prior, and resulting posterior expected returns are plotted below.

We can see that our rank views were respected in the posterior.  That said, since the optimizer seeks a posterior that is as “close” as possible to the prior, we find that the expected returns of intermediate-term US Treasuries, REITs, and gold are all equal at 3%.

Nevertheless, we can see how our views altered the structure of other expected returns.  For example, our view on US small-caps significantly altered the expected returns of other equity exposures.  Furthermore, for high yield to outperform US small-caps, asset class expectations were lowered across the board.

Conclusion

Tactical views in multi-asset portfolios can be difficult to implement for a variety of reasons.  In this commentary, we show how methods like Black-Litterman and Entropy Pooling can be utilized by asset allocators to express a variety of views and incorporate these views in a cohesive manner.

Once the views have been translated back into capital market assumptions, these assumptions can be leveraged to construct a variety of portfolios based upon policy constraints.  In this manner, the same tactical views can be embedded consistently across a variety of portfolios while still acknowledging the unique objectives of each portfolio constructed.


[1] https://blog.thinknewfound.com/2017/07/four-important-details-tactical-asset-allocation/

[2] For clarity, we’re using “addressed” here in the loose sense of the word.  As in, “this is one potential solution to the problem.”  As is frequently the case, the solution comes with its own set of assumptions and embedded problems.  As always, there is no holy grail.

[3] By risk premia, we mean things like the Equity Risk Premium, the Bond Risk Premium (i.e. the Term Premium), the Credit Risk Premium, the Liquidity Risk Premium, et cetera.  Active Premia – like relative value – confuse this notion a bit, so we’re going to conveniently ignore them for this discussion.

[4] For example, see: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2352932

[5] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1213325

[6] Those looking to implement can find Meucci’s MatLab code (https://www.mathworks.com/matlabcentral/fileexchange/21307-fully-flexible-views-and-stress-testing) and public R code (https://r-forge.r-project.org/scm/viewvc.php/pkg/Meucci/R/EntropyProg.R?view=markup&root=returnanalytics) available.  We have a Python version we can likely open-source if there is enough interest.

Growth Optimal Portfolios

This post is available as a PDF download here.

Summary­­

  • Traditional portfolio management focuses explicitly on the trade-off between risk and return.
  • Anecdotally, investors often care more about the growth of their wealth. Due to compounding effects, wealth is a convex function of realized returns.
  • Within, we explore geometric mean maximization, an alternative to the traditional Sharpe ratio maximization that seeks to maximize the long-term growth rate of a portfolio.
  • Due to compounding effects, volatility plays a critical role in the growth of wealth. Seemingly lower return portfolios may actually lead to higher expected terminal wealth if volatility is low enough.
  • Maximizing for long-term growth rates may be incompatible with short-term investor needs. More explicit accounting for horizon risk may be prudent.

In 1956, J.L. Kelly published “A New Interpretation of Information Rate,” a seminal paper in betting theory that built off the work of Claude Shannon.  Within, Kelly derived an optimal betting strategy (called the Kelly criterion) for maximizing the long-term growth rate of a gambler’s wealth over a sequence of bets.  Key in this breakthrough was the acknowledgement of cumulative effects: the gambler would be reinvesting gains and losses, such that too large a bet would lead to ruin before any probabilistic advantage was ever realized.

Around the same time, Markowitz was laying the foundations of Modern Portfolio Theory, which relied upon mean and variance for the selection of portfolios.  Later work by Sharpe and others would identify the notion of the tangency portfolio: the portfolio that maximizes excess return per unit of risk.

Without leverage, however, investors cannot “eat” risk-adjusted returns.  Nor do they, anecdotally, really seem to care about it.  We, for example, have never heard of anyone opening their statement to look at their Sharpe ratio.

More academically, part of the problem with Markowitz’s work, as identified by Henry Latane in 1959, was that it did not provide an objective measure for selecting a portfolio along the efficient frontier.  Latane argued that for an investor looking to maximize terminal wealth (assuming a sequence of uncertain and compounding choices), one optimal strategy was to select the portfolio that maximized geometric mean return.

 

The Math Behind Growth-Optimal Portfolios

We start with the idea that the geometric mean return, g, of a portfolio – the value we want to maximize – will be equal to the annualized compound return:

With some slight manipulation, we find:

For[1],

We can use a Taylor expansion to approximate the log returns around their mean:

Dropping higher order terms and taking the expected value of both sides, we get:

Which can be expressed using the geometric mean return as:

Where sigma is the volatility of the linear returns.

 

Multi-Period Investing: Volatility is a Drag

At the end of the last section, we found that the geometric mean return is a function of the arithmetic mean return and variance, with variance reducing the growth rate.  This relationship may already be familiar to some under the notion of volatility drag.[2]

Volatility drag is the idea that the arithmetic mean return is greater than the geometric mean return – with the difference being due to volatility. Consider this simple, albeit extreme, example: on the first day, you make 100%; on the second day you lose 50%.

The arithmetic mean of these two returns is 25%, yet after both periods, your true compound return is 0%.

For less extreme examples, a larger number of periods is required.  Nevertheless, the effect remains: “volatility” causes a divergence between the arithmetic and geometric mean.

From a pure definition perspective, this is true for returns.  It is, perhaps, somewhat misleading when it comes to thinking about wealth.

Note that in finance, we often assume that wealth is log-normally distributed (implying that the log returns are normally distributed).  This is important, as wealth should only vary between [0, ∞) while returns can technically vary between (-∞, ∞).

If we hold this assumption, we can say that the compounded return over T periods (assuming constant expected returns and volatilities) – is[3]:

Where  is the random return shock at time t.

Using this framework, for large T, the median compounded return is:

What about the mean compounded return?  We can re-write our above framework as:

Note that the random variable is log-normal, the two terms are independent of one another, and that

Thus,

The important takeaway here is that volatility does not affect our expected level of wealth.  It does, however, drive the mean and median further apart.

The intuition here is that while returns are generally assumed to be symmetric, wealth is highly skewed: we can only lose 100% of our money but can theoretically make an infinite amount.  Therefore, the mean is pushed upwards by the return shocks.

Over the long run, however, the annualized compound return does not approach the mean: rather, it approaches the median.  Consider that the annualized compounded return can be written:

Taking the limit as T goes to infinity, the second term approaches 1, leaving only:

Which is the annualized median compounded return.  Hence, over the long run, over one single realized return path, the investor’s growth rate should approach the median, not the mean, meaning that volatility plays a crucial role in long-term wealth levels.

 

The Many Benefits of Growth-Optimal Portfolios

The works of Markowitz et al. and Latane have subtle differences.

  • Sharpe Ratio Maximization (“SRM”) is a single-period framework; Geometric Mean Maximization (“GMM”) is a multi-period framework.
  • SRM maximizes the expected utility of terminal wealth; GMM maximizes the expected level of terminal wealth.

Over time, a number of attributes regarding GMM have been proved.

  • Breiman (1961) – GMM minimizes the expected time to reach a pre-assigned monetary target V asymptotically as V tends to infinity.
  • Hakansson (1971) – GMM is myopic; the current composition depends only on the distribution of returns over the next rebalancing period.
  • Hakansson and Miller (1975) – GMM investors never risk ruin.
  • Algoet and Cover (1988) – Assumptions requiring the independence of returns between periods can be relaxed.
  • Ethier (2004) – GMM maximizes the median of an investor’s fortune.
  • Dempster et al. (2008) – GMM can create value even in the case where every tradeable asset becomes almost surely worthless.

With all these provable benefits, it would seem that for any investor with a sufficiently long investment horizon, the GMM strategy is superior.  Even Markowitz was an early supporter, dedicating an entire chapter of his book Portfolio Selection: Efficient Diversification of Investments, to it.

Why, then, has GMM largely been ignored in favor of SRM?

 

A Theoretical Debate

The most significant early challenger to GMM was Paul Samuelson who argued that maximizing geometric mean return was not necessarily consistent with maximizing an investor’s expected utility.  This is an important distinction, as financial theory generally requires decision making be based on expected utility maximization.  If care is not taken, the maximization of other objective functions can lead to irrational decision making: a violation of basic finance principles.

 

Practical Issues with GMM

Just because the GMM provably dominates the value of any other portfolio over a long-horizon does not mean that it is “better” for investors over all horizons.

We use quotation marks around better because the definition is largely subjective – though economists would have us believe we can be packaged nicely into utility functions.  Regardless,

  • Estrada (2010) shows that GMM portfolios are empirically less diversified and more volatile than SRM portfolios.
  • Rubinstein (1991) shows that it may take 208 years to be 95% confident that a Kelly strategy beats an all-cash strategy, and 4700 years to be 95% sure that it beats an all-stock strategy.

A horizon of 208 years, and especially 4700 years, has little applicability to nearly all investors.  For finite horizons, however, maximizing the long-term geometric growth rate may not be equivalent to maximizing the expected geometric return.

Consider a simple case with an asset that returns either 100% or -50% for a given year.  Below we plot the expected geometric growth rate of our portfolio, depending on how many years we hold the asset.

We can see that for finite periods, the expected geometric return is not zero, but rather asymptotically approaches zero as the number of years increases.

 

Finite Period Growth-Optimal Portfolios

Since most investors do not have 4700 hundred years to wait, a more explicit acknowledgement of holding period may be useful.  There are a variety of approximations available to describe the distribution of geometric returns with a finite period (with complexity trading off with accuracy); one such approximation is:

Rujeerapaiboon, Kuhn, Wiesemann (2014)[4] propose a “robust” solution for fixed-mix portfolios (i.e. those that rebalance back to a fixed set of weights at the end of each period) and finite horizons.  Specifically, they seek to maximize the worst-case geometric growth rate (where “worst case” is defined by some probability threshold), under all probability distributions (consistent with an investor’s prior information).

If we simplify a bit and assume a single distribution for asset returns, then for a variety of worst-case probability thresholds, we can solve for the maximum growth rate.

As we would expect, the more certain we need to be of our returns, the lower our growth rate will be.  Thus, our uncertainty parameter, , can serve, in a way, as a risk-aversion parameter.

As an example, we can employ J.P. Morgan’s current capital market assumptions, our simulation-based optimizer, the above estimates for E[g] and V[g], and vary the probability threshold to find “robust” growth-optimal portfolios.  We will assume a 5-year holding period.

Source: Capital market assumptions from J.P. Morgan.  Optimization performed by Newfound Research using a simulation-based process to account for parameter uncertainty.  Certain asset classes listed in J.P. Morgan’s capital market assumptions were not considered because they were either (i) redundant due to other asset classes that were included or (ii) difficult to access outside of private or non-liquid investment vehicles. 

 

To make interpretation easier, we have color coded the categories, with equities in blue, fixed income in green, credit in orange, and alternatives in yellow.

We can see that even with our uncertainty constraints relaxed to 20% (i.e. our growth rate will only beat the worst-case growth rate 80% of the time), the portfolio remains fairly diversified, with large exposures to credit, alternatives, and even long-dated Treasuries largely used to offset equity risk from emerging markets.

While this is partly due to the generally bearish view most firms have on traditional equities, this also highlights the important role that volatility plays in dampening geometric return expectations.

 

Low Volatility: A Geometric Mean Anomaly?

By now, most investors are aware of the low volatility anomaly, whereby strategies that focus on low volatility or low beta securities persistently outperform expectations given by models like CAPM.

To date, there have been three behavioral arguments:

  1. Asset managers prefer to buy higher risk stocks in effort to beat the benchmark on an absolute basis;
  2. Investors are constrained (either legally or preferentially) from using leverage, and therefore buy higher risk stocks;
  3. Investors have a deep-seeded preference for lottery-type payoffs, and so buy riskier stocks.

In all three cases, investors overbid higher risk stocks and leave low-risk stocks underbid.

In Low Volatility Equity Investing: Anomaly or Algebraic Artifact, Dan diBartolomeo offers another possibility.[5]  He notes that while the CAPM says there is a linear relationship between systematic risk (beta) and reward, the CAPM is a single-period model.  In a multi-period model, there would be convex relationship between geometric return and systematic risk.

Assuming the CAPM holds, diBartolomeo seeks to solve for the optimal beta that maximizes the geometric growth rate of a portfolio.  In doing so, he addresses several differences between theory and reality:

  • The traditional market portfolio consists of all risky assets, not just stocks. Therefore, an all stock portfolio likely has a very high relative beta.
  • The true market portfolio would contain a number of illiquid assets. In adjusting volatility for this illiquidity – which in some cases can triple risk values – the optimal beta would likely go down.
  • In adjusting for skew and kurtosis exhibited by financial time series, the optimal beta would likely go down.
  • In general, investors tend to be more risk averse than they are growth optimal, which may further cause a lower optimal beta level.
  • Beta and market volatility are estimated, not known. This causes an increase in measured asset class volatility and further reduces the optimal beta value.

With these adjustments, the compound growth rate of low volatility securities may not be an anomaly at all: rather, perception of outperformance may be simply due to a poor interpretation of the CAPM.

This is both good and bad news.  The bad news is that if the performance of low volatility is entirely rational, it’s hard for a manager to demand compensation for it.  The good news is that if this is the case, and there is no anomaly, then the performance cannot be arbitraged away.

 

Conclusion: Volatility Matters for Wealth Accumulation

While traditional portfolio theory leads to an explicit trade-off of risk and return, the realized multi-period wealth of an investor will have a non-linear response – i.e. compounding – to the single-period realizations.

For investors who care about the maximization of terminal wealth, a reduction of volatility, even at the expense of a lower expected return, can lead to a higher level of wealth accumulation.

This can be non-intuitive.  After all, how can a lower expected return lead to a higher level of wealth?  To invoke Nassim Taleb, in non-linear systems, volatility matters more than expected return.  Since wealth is a convex function of return, a single bad, outlier return can be disastrous.  A 100% gain is great, but a 100% loss puts you out of business.

With compounding, slow and steady may truly win the race.

It is worth noting, however, that the portfolio that maximizes long-run return may not necessarily best meet an investor’s needs (e.g. liabilities).  In many cases, short-run stability may be preferred at the expense of both long-run average returns and long-term wealth.


[1] Note that we are using  here to represent the mean of the linear returns. In Geometric Brownian Motion,  is the mean of the log returns.

[2] For those well-versed in pure mathematics, this is an example of the AM-GM inequality.

[3] For a more general derivation with time-varying expected returns and volatilities, please see http://investmentmath.com/finance/2014/03/04/volatility-drag.html.

[4] https://doi.org/10.1287/mnsc.2015.2228

[5] http://www.northinfo.com/documents/559.pdf

Diversification in Multi-Factor Portfolios

This blog post is available as a PDF here.

Summary­­

  • The debate rages on over the application of valuation in factor-timing methods. Regardless, diversification remains a prudent recommendation.
  • How to diversify multi-factor portfolios, however, remains up for debate.
  • The ActiveBeta team at Goldman Sachs finds new evidence that composite diversification approaches can offer a higher information ratio than integrated approaches due to interaction effects at low-to-moderate factor concentration levels.
  • At high levels, they find that integrated approaches have higher information ratios due to high levels of idiosyncratic risks in composite approaches.
  • We return to old research and explore empirical evidence in FTSE Russell’s tilt-tilt approach to building an integrated multi-factor portfolio to determine if this multi-factor approach does deliver greater factor efficiency than a comparable composite approach.

The debate over factor timing between Cliff Asness and Rob Arnott rages on.  This week saw Cliff publish a blog post titled Factor Timing is Hard providing an overview of his recently co-authored work Contrarian Factor Timing is Deceptively Difficult.  Generally in academic research, you find a certain level of hedged decorum: authors rarely insult the quality of work, they just simply refute it with their own evidence.

This time, Cliff pulled no punches.

“In multiple online white papers, Arnott and co-authors present evidence in support of contrarian factor timing based on a plethora of mostly inapplicable, exaggerated, and poorly designed tests that also flout research norms.”

At the risk of degrading this weekly research commentary into a gossip column: Ouch.  Burn.

We’ll be providing a much deeper dive into this continued factor-timing debate (as well as our own thoughts) in next week’s commentary.

In the meantime, at least there is one thing we can all agree on – including Cliff and Rob – factor portfolios are better diversified than not.

Except, as an industry, we cannot even agree how to diversify them.

Diversifying Multi-Factor Portfolios: Composite vs. Integrated

When it comes to building multi-factor portfolios, there are two camps of thought.

The first camp believes in a two-step approach.  First, portfolios are built for each factor.  To do this, securities are often given a score for each factor, and when a factor sleeve is built, securities with higher scores receive an overweight position while those with lower scores receive an underweight.  After those portfolios are built, they are blended together to create a combined portfolio.  As an example, a value / momentum multi-factor portfolio would be built by first constructing value and momentum portfolios, and then blending these two portfolios together.  This approach is known as “mixed,” “composite,” or “portfolio blend.”

Source: Ghayur, Heaney, and Platt (2016)

The second camp uses a single-step approach.  Securities are still given a score for each factor, but those scores are blended into a single aggregate value representing the overall strength of that security.  A single portfolio is then built, guided by this blended value, overweighting securities with higher scores and underweighting securities with lower scores.  This approach is known as “integrated” or “signal blend.”

Source: Ghayur, Heaney, and Platt (2016)

To re-hash the general debate:

  • Portfolio blend advocates tend to prefer the simplicity, transparency, and control of the approach. Furthermore, there is a preponderance of evidence supporting single-factor portfolios, but research exploring the potential interaction effects of a signal blend approach is limited and therefore potentially introduces unknown risks.
  • Signal blend advocates argue that a portfolio blend approach introduces inefficiencies: that by constructing each sleeve independently, securities with canceling factor scores can be introduced and dilute overall factor exposure. The general argument goes along the line of, “we want the decathlon athlete, not a team full of individual sport athletes.”

Long-time readers of our commentary may, at this point, be groaning; how is this topic not dead yet?  After all, we’ve written about it numerous times in the past.

  • In Beware Bad Multi-Factor Portfolios we argued that the integrated approach was fundamentally flawed due to the different decay rates of factor alpha (which is equivalent to saying that factor portfolios turnover at different rates). By combining a slow-moving signal with a fast-moving signal, variance in the composite signal becomes dominated by the fast-moving signal.In retrospect, our choice of wording here was probably a bit too concrete.  We believe our point still stands that care must be taken in integrated approaches because of relative turnover speed differences in different factors, but it is not an insurmountable hurdle in construction.
  • In Multi-Factor: Mix or Integrate? we explored an AQR paper that advocated for an integrated approach. We found it ironic that this was published shortly after Cliff Asness had published an article discussing the turnover issues that make applying value-based timing difficult for factors like momentum – an argument similar to our past blog post.In this post, we continued to find evidence that integrated approaches ran the risk of being governed by high turnover factors.
  • In Is That Leverage in my Multi-Factor ETF? we explored an argument made by FTSE Russell that an integrated approach offered implicit leverage effects, allowing you to use the same dollar to access multiple factors simultaneously.This is probably the best argument we have heard for multi-factor portfolios to date.Unfortunately, empirical evidence suggested that existing integrated multi-factor ETF portfolios did not offer significantly more factor exposure than composite peers.

    It is worth noting, however, that the data we were able to explore was limited as multi-factor portfolios are largely new. We were not even able to evaluate, for example, a FTSE Russell product despite the fact it was FTSE Russell making the argument.

  • Feeling that our empirical test did not necessarily do justice to FTSE Russell’s argument, we wrote Capital Efficiency in Multi-Factor Portfolios. If we were to make an argument for our most underrated article of 2016, this would be it – but that is probably because it was filled with obtuse mathematics.The point of the piece was to try to reconcile FTSE Russell’s argument from a theoretical basis.  What we found, under some broad assumptions, was that under all cases, an integrated approach should provide at least as much, and generally much more, factor exposure than a mixed approach due to the implied leverage effect.

So, honestly, how much more can we say on this topic?

New Evidence of Interaction Effects in Multi-Factor Portfolios

Well the ActiveBeta Equity Strategies team at Goldman Sachs Asset Management published a paper late last year comparing the two approaches using Russell 1000 securities from January 1979 to June 2016.

Unlike our work, in which we compared composite and integrated portfolios built to match the percentage of stocks selected, Ghayur, Heaney, and Platt (2016) built portfolios to match factor exposure.  Whereas we matched an integrated approach that picked the top 25% of securities with a composite approach where each sleeve picked the top 25%,  Ghayur, Heaney, and Platt (2016) accounted for expected factor dilution by having the sleeves in the composite approach pick the top 12.5%.

Using this factor-exposure matching approach, their results are surprising.  Rather than a definitive answer as to which approach is superior, they find that the portfolio blend approach offers a higher information ratio at lower levels of factor exposure (i.e. lower levels of active risk), while the signal blend approach offers a higher information ratio at higher levels of factor exposure (i.e. higher levels of active risk).

How can this be the case?

The answer comes down to interaction effects.

When a portfolio is built expecting more diluted overall factor exposure – e.g. to have lower tracking error to the index – the percentage overlap between securities in the composite and integrated approaches is higher.  However, for more concentrated factor exposure, the overlap is lower.

Source: Ghayur, Heaney, and Platt (2016)

Advocates for an integrated approach have historically argued that securities found in Area 3 in the figure above would be a drag on portfolio performance.  These are the securities found in a composite approach but not an integrated approach.  The argument is that while high in one factor score, these securities are also very low in another, and including them in a portfolio only dilutes overall factor exposure via a canceling effect.

On the other hand, securities in Area 2, found only in the integrated approach, should increase factor exposure because you are getting securities with higher loadings on both factors simultaneously.

As it turns out, evidence suggests this is not the case.

In fact, for lower concentration factor portfolios, Ghayur, Heaney, and Platt (2016) find just the opposite.

Source: Ghayur, Heaney, and Platt (2016)

As it turns out, interaction effects give Area 3 positive active returns while Area 2 ends up delivering negative active returns.  To quote,

“The securities held in the portfolio blend and the signal blend can be mapped to the 4×4 quartile matrix (Table 5). The portfolio blend holds securities in the top row (Q4 value) and second-to-last column (Q4 momentum). All buckets provide positive contributions to active return. The mapping is more complicated for the signal blend but is roughly consistent with the diagram in Figure 1 (i.e., holdings will be anything to the right of the diagonal line drawn from the top left to the bottom right of the 4×4 matrix). Examining contributions to active return and risk (not reported), we find that the signal blend suffers from not holding enough of the high value/low momentum (Q4/Q1) stocks and low value/high momentum (Q1/Q4) stocks. The signal blend also incurs significant risk from holding Q3 value/Q3 momentum stocks, which have a negative active return (-0.4%). High momentum/high value (Q4/Q4) stocks earn the highest active return. These stocks offer a greater benefit to the portfolio blend as they are double-weighted.

In terms of active risk contributions, we note that low momentum/high value (Q1/Q4) stocks have a net positive exposure to value, while high momentum/low value (Q4/Q1) stocks have a net positive exposure to momentum. These two groups exhibit a high negative active return correlation and are diversifying (i.e., reduce active risk), while delivering positive active returns. As such, the assertion that avoiding securities with offsetting factor exposures improves portfolio performance is not entirely correct. If factor payoffs depict strong interaction effects, then holding such securities may actually be beneficial, and the portfolio blend benefits from investing in such securities. These contextual relationships are also present to varying degrees in other factor pairings.”

When factor concentration is higher, however, the increased degree of idiosyncratic risk found in Area 1 of the composite approach outweighs the interaction benefits found in Area 3.  This effect can be seen in the table below.  We see that Shared Securities under Portfolio Blend have an increased Active Return Contribution in comparison to the Signal Blend but also significantly higher Active Risk Contribution.  This is due to the fact that Shared Securities represent only 45% of the active weight in the High Factor Exposure example for the Signal Blend approach, but 72% of the weight in the Portfolio Blend.  The large portfolio concentration on just a few securities ultimately introduces too much idiosyncratic risk.

Source: Ghayur, Heaney, and Platt (2016)

Furthermore, while Area 3 (Securities Held Only in Portfolio Blend) remains a positive contributor to Active Return, it does not have the negative Active Risk contribution as it did in the prior, low factor concentration example.

The broad result that Ghayur, Heaney, and Platt (2016) propose is simple: for low-to-moderate levels of factor exposures, a portfolio blend exhibits higher information ratios and for higher levels of factor exposure, a signal blend approach works better.  That being said, we would be remiss if we didn’t point out that these types of conclusions are very dependent on the exact portfolio construction methodology used.  There are varying qualities of approaches to building both portfolio blend and signal blend multi-factor portfolios, which brings us back full circle to…

Re-Addressing FTSE Russell’s Tilt-Tilt Method

In our initial empirical analysis of FTSE Russell’s leverage argument, we were unable to actually test the theory on FTSE Russell’s multi-factor approach itself due to a lack of data.  In our analytical analysis, we used a standard integrated approach of averaging factor scores.  FTSE Russell takes the integrated method a step further by introducing a “tilt-tilt” approach, where instead of averaging factor signals to create an integrated signal, they use a multiplicative approach.

This multiplicative approach, however, is not run on normally distributed variables (i.e. factor z-scores) as was the case in our own analysis (and GSAM paper discussed above), but rather on uniformly distributed scores between [0, 1].

This makes things analytically gnarly (e.g. instead of working with normal and chi-squared distributions, we’re working with Irwin-Hall and product of uniform distributions).  Fortunately, we can employ a numerical approach to get an idea of what is going on.  Below we simulate scores for two factors (assumed to be independent; let’s call them A and B) for 500 stocks and then plot the distribution of resulting integrated and tilt-tilt scoring methods using those scores.

Source: Newfound Research.  Simulation-based methodology.

What we can see is that while the integrated approach looks somewhat normal (in fact, the Irwin-Hall distribution approaches normal as more uniform distributions are added; e.g. we incorporate more factors), the tilt-tilt distribution is single-tailed.

A standard next step in constructing an index would be to multiply these scores by benchmark weights and then normalize to come up with new, tilted weights.  We can get a sense for how weights are scaled by taking each distribution above and dividing it by the distribution average and then plotting scores against each other.

Source: Newfound Research.  Simulation-based methodology.

The grey dotted line provides guidance as to how the two methods differ.  If a point is above the line, it means the integrated approach has a larger tilt; points below the line indicate that the tilt-tilt method has a larger tilt.

What we can see is that for scores below average, tilt-tilt is more aggressive at reducing exposure; similarly for scores above average, tilt-tilt is more aggressive at increasing exposure.  In other words, the tilt-tilt approach works to aggressively increase the intensity of factor exposure.

Using index data for FTSE Russell factor indices, we can empirically test whether this approach actually captures the capital efficiency that integrated approaches should benefit from.  Specifically, we can compare the FTSE Russell Comprehensive Factor Index (the tilt-tilt integrated multi-factor approach) versus an equal-weight composite of FTSE Russell single-factor indices.  The FTSE Russell multi-factor approach includes value, size, momentum, quality, and low-volatility tilts, so our composite portfolio will be an equal-weight portfolio of long-only indices representing these factors.

To test for factor exposure, we regress both portfolios against long/short factors from AQR’s data library.  Data covers the period of 9/30/2001 through 1/31/2017.

We find that factor loadings for the tilt-tilt method exceed those for the equal-weight composite.

Source: FTSE Russell; AQR; calculations by Newfound Research.

We also find they do an admirable job at capturing a significant share of factor exposure available that would be available in long-only single-factor indices.  In other words, if instead of taking a composite approach – which we expect to be diluted – we decide to only purchase a long-only momentum portfolio, how much of that long-only momentum exposure can be re-captured by using this tilt-tilt integrated, multi-factor approach?

We find that for most factors, it is a significant proportion.

Source: FTSE Russell; AQR; calculations by Newfound Research.

(Note: The Bet-Against-Beta factor (“BAB”) is removed from this chart because the amount of the factor available in the FTSE Russell Volatility Factor Index was deemed to be insignificant, and so resulting relative proportions exceed 18x).

Conclusion

While the jury is still out on factor timing itself, diversifying across factors is broadly considered to be a prudent decision. How to implement that diversification remains in debate.

What makes the diversification concept in multi-factor investing unique, as compared to standard asset class diversification, is that through an integrated approach, implicit leverage can be accessed.  The same dollar can be used to introduce multiple factor exposures simultaneously.

While this implicit leverage should lead to portfolios that empirically have more factor exposure, evidence suggests that is not always the case.  A new paper by the ActiveBeta team at Goldman Sachs suggests that for low-to-moderate levels of factor exposure, a composite approach may be just as, if not more, effective as an integrated approach.  More surprisingly is that this effectiveness comes from beneficial interaction effects exactly in the area of the portfolio that integrated advocates have claimed there to be a drag.

At higher concentration levels of factor exposure, however, the integrated approach is more efficient, as the composite approach appears to introduce too much idiosyncratic risk.

We bring the conversation full circle in this piece by going back to some original research we detailed last fall, testing FTSE Russell’s unique tilt-tilt methodology to integrated mutli-factor investing.  In theory, the tilt-tilt method should increase the intensity of factor exposure compared to traditional integrated approaches.  While we previously found little empirical evidence supporting the capital efficiency argument for integrated multi-factor ETFs versus composite peers, a test of FTSE Russell index data finds that the tilt-tilt method may provide a significant boost to factor exposure.


Page 9 of 10

Powered by WordPress & Theme by Anders Norén