Flirting with Models

The Research Library of Newfound Research

A Trend Equity Primer

This post is available as a PDF download here.

Summary­

  • Trend-following strategies exploit the fact that investors exhibit behavioral biases that cause trends to persist.
  • While many investment strategies have a concave payoff profile that reaps small rewards at the risk of large losses, trend-following strategies exhibit a convex payoff profile, one that pays small premiums with the potential of a large reward.
  • By implementing a trend-following strategy on equities, investors can tap into both the long-term return premium from holding equities and the convex payoff profile associated with trend following.
  • There are multiple ways to include a trend-following equity strategy in a portfolio, and the method of incorporation will affect the overall risk and return expectations in different market environments.
  • As long as careful consideration is given to whipsaw, hedging ability, and implementation costs, trend-following equity can be a potentially useful diversifier in most traditionally allocated portfolios.

A Balance of Risks

Most investors – individual and institutional alike – live in the balance of two risks: failing slow and failing fast.  Most investors are familiar with the latter: the risk of large and sudden drawdowns that can permanently impair an investor’s lifestyle or ability to meet future liabilities.  Slow failure, on the other hand, occurs when an investor fails to grow their portfolio at a speed sufficient to offset inflation and withdrawals.

Investors have traditionally managed these risks through asset allocation, balancing exposure to growth-oriented asset classes (e.g. equities) with more conservative, risk-mitigating exposures (e.g. cash or bonds).  How these assets are balanced is typically governed by where an investor falls in their investment lifecycle and which risk has the greatest impact upon the probability of their future success.

For example, younger investors who have a large proportion of their future wealth tied up in human capital often have very little risk of failing fast, as they are not presently relying upon withdrawals from their investment capital. Evidence suggests that the risk of fast failure peaks for pre- and early-retirees, whose future lifestyle will be largely predicated upon the amount of capital they are able to maintain into early retirement.  Later-stage retirees, on the other hand, once again become subject to the risk of failing slow, as longer lifespans put greater pressure upon the initial retirement capital to last.

Trend equity strategies seek to address both risks simultaneously by maintaining equity exposure when trends are positive and de-risking the portfolio when trends are negative.  Empirical evidence suggests that such strategies may allow investors to harvest a significant proportion of the long-term equity risk premium while significantly reducing the impact of severe and prolonged drawdowns.

The Potential Hedging Properties of Trend Following

When investors buy stocks and bonds, they are exposing themselves to “systematic risk factors.”  These risk factors are the un-diversifiable uncertainties associated with any investment. For bearing these risks, investors expect to earn a reward.  For example, common equity is generally considered to be riskier than fixed income because it is subordinate in the capital structure, does not have a defined payout, and does not have a defined maturity date.  A rational investor would only elect to hold stocks over bonds, then, if they expected to earn a return premium for doing so.

Similarly, the historical premium associated with many active investment strategies are also assumed to be risk-based in nature.  For example, quantitatively cheap stocks have historically outperformed expensive ones, an anomaly called the “value factor.”  Cheap stocks may be trading cheaply for a reason, however, and the potential excess return earned from buying them may simply be the premium required by investors to bear the excess risk.

In many ways, an investor bearing risk can be thought of as an insurer, expecting to collect a premium over time for their willingness to carry risk that other investors are looking to offload.  The payoff profile for premiums generated from bearing risk, however, is concave in nature: the investor expects to collect a small premium over time but is exposed to potentially large losses (see Figure 1).  This approach is often called being “short volatility,” as the manifestation of risk often coincides with large (primarily negative) swings in asset values.

Even the process of rebalancing a strategic asset allocation can create a concave payoff structure.  By reallocating back to a fixed mixture of assets, an investor sells assets that have recently outperformed and buys assets that have recently underperformed, benefiting when the relative performance of investments mean-reverts over time.

When taken together, strategically allocated portfolios – even those with exposure to alternative risk premia – tend to combine a series of concave payoff structures. This implies that a correlation-based diversification scheme may not be sufficient for managing left-tail risk during bad times, as a collection of small premiums may not offset large losses.

In contrast, trend-following strategies “cut their losers short and let their winners run” by design, creating a convex payoff structure (see Figure 1).1  Whereas concave strategies can be thought of as collecting an expected return premium for bearing risk, a convex payoff can be thought of as expecting to pay an insurance premium in order to hedge risk.  This implies that while concave payoffs benefit from stability, convex payoffs benefit from instability, potentially helping hedge portfolios against large losses at the cost of smaller negative returns during normal market environments.

Figure 1: Example Concave and Convex Payoff Structures; Profit in Blue and Loss in Orange

Source: Newfound Research.  For illustrative purposes only and not representative of any Newfound Research product or investment.

What is Trend Equity?

Trend equity strategies rely upon the empirical evidence2 that performance tends to persist in the short-run: positive performance tends to beget further positive performance and negative performance tends to beget further negative performance.  The theory behind the evidence is that behavioral biases exhibited by investors lead to the emergence of trends.

In an efficient market, changes in the underlying value of an investment should be met by an immediate, commensurate change in the price of that investment. The empirical evidence of trends suggests that investors may not be entirely efficient at processing new information.  Behavioral theory suggests that investors anchor their views on prior beliefs, causing price to underreact to new information.  As price continues to drift towards fair value, herding behavior occurs, causing price to overreact and extend beyond fair value.  Combined, these effects cause a trend.

Trend equity strategies seek to capture this potential inefficiency by systematically investing in equities when they are exhibiting positively trending characteristics and divesting when they exhibit negative trends.  The potential benefit of this approach is that it can try to exploit two sources of return: (1) the expected long-term risk premium associated with equities, and (2) the convex payoff structure typically associated with trend-following strategies.

As shown in Figure 2, a hypothetical implementation of this strategy on large-cap U.S. equities has historically matched the long-term annualized return while significantly reducing exposure to both tails of the distribution.  This is quantified in Figure 3, which demonstrates a significant reduction in both the skew and kurtosis (“fat-tailedness”) of the return distribution.

Figure 2

Figure 3

U.S. Large-Cap EquitiesTrend Equity
Annualized Return11.1%11.6%
Volatility16.9%11.3%
Skewness-1.40.0
Excess Kurtosis2.2-1.0

 Source: Newfound Research.  Return data relies on hypothetical indices and is exclusive of all fees and expenses.  Returns assume the reinvestment of all dividends.  Trend Equity invests in U.S. Large-Cap Equity when the prior month has a positive 12-1 month total return and in 3-month U.S. Treasury Bills otherwise.  The Trend Equity strategy does not reflect any strategy offered or managed by Newfound Research and was constructed exclusively for the purposes of this commentary.  It is not possible to invest in an index.  Past performance does not guarantee future results.

Implementing Trend Equity

With trend equity seeking to benefit from both the long-term equity risk premium and the convex payoff structure of trend-following, there are two obvious examples of how it can be implemented in the context of an existing strategic portfolio. The preference as to the approach taken will depend upon an investor’s goals.

Investors seeking to reduce risk in their portfolio may prefer to think of trend equity as a form of dynamically hedged equity, replacing a portion of their traditional equity exposure.  In this case, when trend equity is fully invested, the portfolio will match the original allocation profile; when the trend equity strategy is divested, the portfolio will be significantly underweight equity exposure.  The intent of this approach is to match the long-term return profile of equities with less realized risk.

On the other hand, investors seeking to increase their returns may prefer to treat trend equity as a pivot within their portfolio, funding the allocation by drawing upon both traditional stock and bond exposures.  In this case, when fully invested, trend equity will create an overweight to equity exposure within the portfolio; when divested, it will create an underweight.  The intent of this approach is to match the long-term realized risk profile of a blended stock/bond mix while enhancing long-term returns.

To explore these two options in the context of an investor’s lifecycle, we echo the work of Freccia, Rauseo, and Villalon (2017).  Specifically, we will begin with a naïve “own-your-age” glide path, which allocates a proportion of capital to bonds equivalent to the investor’s age.  We assume the split between domestic and international exposures is 60/40 and 70/30 respectively for stocks and bonds, selected to approximate the split between domestic and international exposures found in Vanguard’s Target Retirement Funds.

An investor seeking to reduce exposure to negative equity tail events could fund trend equity exposure entirely from their traditional equity allocation. Applying the own-your-age glide path over the horizon of June 1988 to June 2018, carving out 30% of U.S. equity exposure for trend equity (e.g. an 11.7% allocation for a 35 year old investor and an 8.1% allocation for a 55 year old investor) would have offered the same long-term return profile while reducing annualized volatility and the maximum drawdown experienced.

For an investor seeking to increase return, funding a position in trend equity from both U.S. equities and U.S. bonds may be a more applicable approach.  Again, applying the own-your-age glide-path from June 1988 to June 2018, we find that replacing 50% of existing U.S. equity exposure and 30% of existing U.S. bond exposure with trend equity would have offered a nearly identical long-term volatility profile while increasing long-term annualized returns.

Figure 4

Source: Newfound Research.  For illustrative purposes only and not representative of any Newfound Research product or investment.

 

Figure 5: Hypothetical Portfolio Statistics, June 1988 – June 2018

Original
Glidepath
Same Return,
Decrease Risk
Increase Return,
Same Risk
Annual Return8.20%8.25%8.60%
Volatility8.58%8.17%8.59%
Maximum Drawdown-28.55%-24.71%-23.80%
Sharpe Ratio0.610.640.65

 Source: Newfound Research.  Return data relies on hypothetical indices and is exclusive of all fees and expenses.  Returns assume the reinvestment of all dividends.  Trend Equity invests in U.S. Large-Cap Equity when the prior month has a positive 12-1 month total return and in 3-month U.S. Treasury Bills otherwise.  The Trend Equity strategy does not reflect any strategy offered or managed by Newfound Research and was constructed exclusively for the purposes of this commentary.  It is not possible to invest in an index.  Past performance does not guarantee future results.

 

Figure 6: Own-Your-Age Glide Paths Including Trend Equity

Source: Newfound Research.  For illustrative purposes only and not representative of any Newfound Research product or investment.  Allocation methodologies described in the preceding section.

A Discussion of Trade-Offs

At Newfound Research, we champion the philosophy that “risk cannot be destroyed, only transformed.”  While we believe that a convex payoff structure – like that empirically found in trend-following strategies – can introduce beneficial diversification into traditionally allocated portfolios, we believe any overview is incomplete without a discussion of the potential trade-offs of such an approach.

The perceived trade-offs will be largely dictated by how trend equity is implemented by an investor.  As in the last section, we will consider two cases: first the investor who replaces their traditional equity exposure, and second the investor that funds an allocation from both stocks and bonds.

In the first case, we believe that the convex payoff example displayed Figure 1 is important to keep in mind.  Traditionally, convex payoffs tend to pay a premium during stable environments.  When this payoff structure is combined with traditional long-only equity exposure to create a trend equity strategy, our expectation should be a return profile that is expected to lag behind traditional equity returns during calm market environments.

This is evident in Figure 7, which plots hypothetical rolling 3-year annualized returns for both large-cap U.S. equities and a hypothetical trend equity strategy. Figure 8 also demonstrates this effect, plotting rolling 1-year returns of a hypothetical trend equity strategy against large-cap U.S. equities, highlighting in orange those years when trend equity underperformed.

For the investor looking to employ trend equity as a means of enhancing return by funding exposure from both stocks and bonds, long-term risk statistics may be misleading.  It is important to keep in mind that at any given time, trend equity can be fully invested in equity exposure.  While evidence suggests that trend-following strategies may be able to act as an efficient hedge when market downturns are gradual, they are typically inefficient when prices collapse suddenly.

In both cases, it is important to keep in mind that convex payoff premium associated with trend equity strategies is not consistent, nor is the payoff guaranteed. In practice, the premium arises from losses that arrive during periods of trend reversals, an effect popularly referred to as “whipsaw.”  A trend equity strategy may go several years without experiencing whipsaw, seemingly avoiding paying any premium, then suddenly experience multiple back-to-back whipsaw events at once.  Investors who allocate immediately before a series of whipsaw events may be dismayed, but we believe that these are the costs necessary to access the convex payoff opportunity and should be considered on a multi-year, annualized basis.

Finally, it is important to consider that trend-following is an active strategy. Beyond management fees, it is important to consider the impact of transaction costs and taxes.

Figure 7Source: Newfound Research.  Return data relies on hypothetical indices and is exclusive of all fees and expenses. Returns assume the reinvestment of all dividends.  Trend Equity invests in U.S. Large-Cap Equity when the prior month has a positive 12-1 month total return and in 3-month U.S. Treasury Bills otherwise.   The Trend Equity strategy does not reflect any strategy offered or managed by Newfound Research and was constructed exclusively for the purposes of this commentary.  It is not possible to invest in an index.  Past performance does not guarantee future results.

Figure 8

Source: Newfound Research.  Return data relies on hypothetical indices and is exclusive of all fees and expenses. Returns assume the reinvestment of all dividends.  Trend Equity invests in U.S. Large-Cap Equity when the prior month has a positive 12-1 month total return and in 3-month U.S. Treasury Bills otherwise.   The Trend Equity strategy does not reflect any strategy offered or managed by Newfound Research and was constructed exclusively for the purposes of this commentary.  It is not possible to invest in an index.  Past performance does not guarantee future results.

Conclusion

In this primer, we have introduced trend equity, an active strategy that seeks to provide investors with exposure to the equity risk premium while mitigating the impacts of severe and prolonged drawdowns.  The strategy aims to achieve this objective by blending exposure to equities with the convex payoff structure traditionally exhibited by trend-following strategies.

We believe that such a strategy can be a particularly useful diversifier for most strategically allocated portfolios, which tend to be exposed to the concave payoff profile of traditional risk factors.  While relying upon correlation may be sufficient in normal market environments, we believe that the potential premiums collected can be insufficient to offset large losses generated during bad times.  It is during these occasions that we believe a convex payoff structure, like that empirically found in trend equity, can be a particularly useful diversifier.

We explored two ways in which investors can incorporate trend equity into a traditional profile depending upon their objective.  Investors looking to reduce realized risk without necessarily sacrificing long-term return can fund their trend equity exposure with their traditional equity allocation.  Investors looking to enhance returns while maintaining the same realized risk profile may be better off funding exposure from both traditional stock and bond allocations.

Finally, we discussed the trade-offs associated with incorporating trend equity into an investor’s portfolio, including (1) the lumpy and potentially large nature of whipsaw events, (2) the inability to hedge against sudden losses, and (3) the costs associated with managing an active strategy.  Despite these potential drawbacks, we believe that trend-following equity can be a potentially useful diversifier in most traditionally allocated portfolios.

Bibliography

Freccia, Maxwell, and Rauseo, Matthew, and Villalon, Daniel, DC Solutions Series: Defensive Equity, Part 2.  Available at https://www.aqr.com/Insights/Research/DC-Solutions/DC-Solutions-Series-Defensive-Equity-Part-2.  Accessed September 2018.

Hsieh, David A. and Fung, William, The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers. The Review of Financial Studies, Vol. 14, No. 2, Summer 2001. Available at SSRN: https://ssrn.com/abstract=250542

Hurst, Brian and Ooi, Yao Hua and Pedersen, Lasse Heje, A Century of Evidence on Trend-Following Investing (June 27, 2017). Available at SSRN: https://ssrn.com/abstract=2993026 or http://dx.doi.org/10.2139/ssrn.2993026

Lempérière, Yves, and Deremble, Cyril and Seager, Philip and Potters, Marc, and Bouchaud, Jean-Phillippe. (April, 2014), Two Centuries of Trend Following, Journal of Investment Strategies, 3(3), pp. 41-61.

Timing Equity Returns Using Monetary Policy

This post is available as PDF download here.

Summary

  • Can the monetary policy environment be used to predict global equity market returns? Should we overweight/buy countries with expansionary monetary policy regimes and underweight/sell countries with contractionary monetary policy regimes?
  • In twelve of the fourteen countries studied, both nominal and real equity returns are higher (lower) when the central banks most recent action was to cut (hike) rates. For example, nominal U.S. equity returns are 1.8% higher during expansionary environments.  Real U.S. equity returns are 3.6% higher during expansionary environments.  The gap is even larger outside the United States.
  • However, the monetary policy regime explains very little of the overall variation in equity returns from a statistical standpoint.
  • While many of the return differentials during expansionary vs. contractionary regimes seem large at first glance, few are statistically significant once we realistically account for the salient features of equity returns and monetary policy. In other words, we can’t be sure the return differentials didn’t arise simply due to luck.
  • As a result, evidence suggests that making buy/sell decisions on the equity markets of a given country using monetary policy regime as the lone signal is overly ambitious.

Can the monetary policy environment be used to predict global equity market returns?  Should we overweight/buy countries with expansionary monetary policy and underweight/sell countries with contractionary monetary policy?

Such are the softball questions that our readers tend to send in.

Intuitively, it’s clear that monetary policy has some type of impact on equity returns.  After all, if the Fed raised rates to 10% tomorrow, that would clearly impact stocks.

The more pertinent question though is if these impacts always tend to be in one direction.  It’s relatively straightforward to build a narrative around why this could be the case.  After all, the Fed’s primary tool to manage its unemployment and inflation mandates is the discount rate.  Typically, we think about the Fed hiking interest rates when the economy gets “too hot” and cutting them when it gets “too cold.”  If hiking (cutting) rates has the goal of slowing (stimulating) the economy, it’s plausible to think that equity returns would be pushed lower (higher).

There are a number of good academic papers on the subject. Ioannadis and Kontonikas (2006) is a good place to start. The paper investigates the impact of monetary policy shifts on equity returns in thirteen OECD countries1 from 1972 to 2002.

Their analysis can be split into two parts.  First, they explore whether there is a contemporaneous relationship between equity returns and short-term interest rates (i.e. how do equity returns respond to interest rate changes?)2.  If there is a relationship, are returns likely to be higher or lower in months where rates increase?

Source: “Monetary Policy and the Stock Market: Some International Evidence” by Ioannadis and Kontonikas (2006).

 

In twelve of the thirteen countries, there is a negative relationship between interest rate changes and equity returns.  Equity returns tend to be lower in months where short-term rates increase.  The relationship is statistically significant at the 5% level in eight of the countries, including the United States.

While these results are interesting, they aren’t of much direct use for investors because, as mentioned earlier, they are contemporaneous.  Knowing that equity returns are lower in months where short-term interest rates rise is actionable only if we can accurately predict the interest rate movements ahead of time.

As an aside, if there is one predictive interest rate model we subscribe to, it’s that height matters.

Fortunately, this is where the authors’ second avenue of analysis comes into play.  In this section, they first classify each month as being part of either a contractionary or an expansionary monetary policy regime.  A month is part of a contractionary regime if the last change in the discount rate was positive (i.e. the last action by that country’s central bank was a hike).  Similarly, a month is part of an expansionary regime if the last central bank action was a rate cut.

We illustrate this classification for the United States below.  Orange shading indicates contractionary regimes and gray shading indicates expansionary regimes.

The authors then regress monthly equity returns on a dummy variable representing which regime a month belongs to.  Importantly, this is not a contemporaneous analysis: we know whether the last rate change was positive or negative heading into the month.  Quoting the paper:

“The estimated beta coefficients associated with the local monetary environment variable are negative and statistically significant in six countries (Finland, France, Italy, Switzerland, UK, US).  Hence, for those countries our measure of the stance of monetary policy contains significant information, which can be used to forecast expected stock returns.  Particularly, we find that restrictive (expansive) monetary policy stance decreases (increases) expected stock returns.”

Do we agree?

Partially.  When we analyze the data using a similar methodology and with data updated through 20183, we indeed find a negative relationship between monetary policy environment and forward 1-month equity returns.  For example, annualized nominal returns in the United States were 10.6% and 8.8% in expansionary and contractionary regimes, respectively.  The gap is larger for real returns – 7.5% in expansionary environments and 3.9% in contractionary environments.

Source: Bloomberg, MSCI, Newfound Research. Past performance does not guarantee future results. Return data relies on hypothetical indices and is exclusive of all fees and expenses. Returns assume the reinvestment of dividends.

 

A similar, albeit more pronounced, pattern emerges when we go outside the United States and consider thirteen other countries.

 

Source: Bloomberg, MSCI, Newfound Research. Past performance does not guarantee future results. Return data relies on hypothetical indices and is exclusive of all fees and expenses. Returns assume the reinvestment of dividends.

 

The results are especially striking in ten of the fourteen countries examined. The effect in the U.S. was smaller compared to many of these.

 

Source: Bloomberg, MSCI, Newfound Research. Past performance does not guarantee future results. Return data relies on hypothetical indices and is exclusive of all fees and expenses. Returns assume the reinvestment of dividends.

 

That being said, we think the statistical significance (and therefore investing merit) is less obvious.  Now, it is certainly the case that many of these differences are statistically significant when measured traditionally.  In this sense, our results agree with Ioannadis and Kontonikas (2006).

However, there are two issues to consider.  First, the R2 values for the regressions are very low.  For example, the highest R2 in the paper is 0.037 for Finland.  In other words, the monetary regime models do not do a particularly great job explaining stock returns.

Second, it’s important to take a step back and think about how monetary regimes evolve.  Central banks, especially today, typically don’t raise rates one month, cut the next, raise the next, etc.  Instead, these regimes tend to last multiple months or years.  The traditional significance testing assumes the former type of behavior, when the latter better reflects reality.

Now, this wouldn’t be a major issue if stock returns were what statisticians call “IID” (independent and identically distributed).  The results of a coin flip are IID.  The probability of heads and tails are unchanged across trials and the result of one flip doesn’t impact the odds for the next.

Daily temperatures are not IID.  The distribution of temperatures is very different for a day in December than they are for a day in July, at least for most of us.  They are not identical.  Nor are they independent.  Today’s high temperature gives us some information that tomorrow’s temperature has a good chance of hitting that value as well.

Needless to say, stock returns behave more like temperatures than they do coin flips.  This combination of facts – stock returns being non-IID (exhibiting both heteroskedasticity4 and autocorrelation) and monetary policy regimes having the tendency to persist over the medium term – leads to false positives.  What at first glance look like statistically significant relationships are no longer up to snuff because the model was poorly constructed in the first place.

To flush out these issues, we used two different simulation-based approaches to test for the significance of return differences across regimes.5

The first approach works as follows for each country:

  1. Compute the probability of expansionary and contractionary regimes using that country’ actual history.
  2. Randomly classify each month into one of the two regimes using the probabilities from #1.
  3. Compute the difference between annualized returns in expansionary vs. contractionary regimes using that country’s actual equity returns.
  4. Return to #2, repeating 10,000 times total.

This approach assumes that today’s monetary policy regime says nothing about what tomorrow’s may be. We have transformed monetary policy into an IID variable.  Below, we plot the regime produced by a single iteration of the simulation. Clearly, this is not realistic.

Source: Newfound Research

 

The second approach is similar to the first in all ways except how the monetary policy regimes are simulated.  The algorithm is:

  1. Compute the transition matrix for each country using that country’s actual history of monetary policy shifts. A transition matrix specifies the likelihood of moving to each regime state given that we were in a given regime the prior month.  For example, if last month was contractionary, we may have a 95% probability of staying contractionary and a 5% probability of moving to an expansionary state.
  2. Randomly classify each month into one of the two regimes using the transition matrix from #1. We have to determine how to seed the simulation (i.e. which state do we start off in).  We do this randomly using the overall historical probability of contractionary/expansionary regimes for that country.
  3. Compute the difference between annualized returns in expansionary vs. contractionary regimes using that country’s actual equity returns.
  4. Return to #2, repeating 10,000 times total.

The regimes produced by this simulation look much more realistic.

Source: Newfound Research

 

When we compare the distribution of return differentials produced by each of the simulation approaches, we see that the second produces a wider range of outcomes.

 

Source: Newfound Research

 

In the table below, we present the confidence intervals for return differentials using each algorithm.  We see that the differentials are statistically significant in six of the fourteen countries when we use the first methodology that produces unrealistic monetary regimes.  Only four countries show statistically significant results with the improved second method.

 

CountrySpread Between Annualized Real Returns95% CI
First Method
P-Value
First Method
95% CI
Second Method
P-Value
Second Method
Australia+9.8%-1.1% to +20.7%7.8%-1.5% to +21.1%8.9%
Belgium+14.6%+4.1% to +25.1%0.6%+0.7% to +28.5%3.9%
Canada-0.7%-12.2% to +10.8%90.5%-14.2% to +12.8%91.9%
Finland+29.0%+6.5% to +51.5%1.2%-2.4% to +60.4%7.1%
France+17.3%-0.5% to +35.1%5.7%-10.8% to +45.4%22.7%
Germany+10.8%-1.1% to +22.7%7.5%-2.8% to +24.4%12.0%
Italy+17.3%+3.6% to +31.0%1.3%-0.2% to +34.8%5.3%
Japan+26.5%+12.1% to +40.9%0.0%+3.4% to +49.6%2.5%
Netherlands+16.8%-1.8% to +35.4%7.6%-11.6% to +45.2%24.7%
Spain+23.8%+11.3% to +36.3%0.0%+9.9% to +37.7%0.1%
Sweden+30.4%+12.7% to +48.1%0.1%+4.7% to +56.1%2.1%
Switzerland+2.3%-11.5% to +16.1%74.4%-26.3% to +30.9%87.5%
United Kingdom-0.6%-11.5% to +10.3%91.4%-12.0% to +10.8%91.8%
United States+3.6%-5.0% to +12.2%41.1%-6.0% to +13.2%46.2%

Source: Bloomberg, MSCI, Newfound Research

 

Conclusion

We find that global equity returns have been more than 10% higher during expansionary regimes.  At first glance, such a large differential suggests there may be an opportunity to profitably trade stocks based on what regime a given country is in.

Unfortunately, the return differentials, while large, are generally not statistically significant when we account for the realistic features of equity returns and monetary policy regimes. In plain English, we can’t be sure that the return differentials didn’t arise simply due to randomness.

This result isn’t too surprising when we consider the complexity of the relationship between equity returns and interest rates (despite what financial commentators may have you believe).  Interest rate changes can impact both the numerator (dividends/dividend growth) and denominator (discount rate) of the dividend discount model in complex ways.  In addition, there are numerous other factors that impact equity returns and are unrelated / only loosely related to interest rates.

When such complexity reigns, it is probably a bit ambitious to rely on a standalone measure of monetary policy regime as a predictor of equity returns.

 


 

Trade Optimization

Trade optimization is more technical topic than we usually cover in our published research.  Therefore, this note will relies heavily on mathematical notation and assumes readers have a basic understanding of optimization.  Accompanying the commentary is code written in Python, meant to provide concrete examples of how these ideas can be implemented.  The Python code leverages the PuLP optimization library.

Readers not proficient in these areas may still benefit from reading the Introduction and evaluating the example outlined in Section 5.

Summary

  • In practice, portfolio managers must account for the real-world implementation costs – both explicit (e.g. commission) and implicit (e.g. bid/ask spread and impact) associated with trading portfolios.
  • Managers often implement trade paring constraints that may limit the number of allowed securities, the number of executed trades, the size of a trade, or the size of holdings. These constraints can turn a well-formed convex optimization into a discrete problem.
  • In this note, we explore how to formulate trade optimization as a Mixed-Integer Linear Programming (“MILP”) problem and implement an example in Python.

0. Initialize Python Libraries

import pandas
import numpy

from pulp import *

import scipy.optimize

1. Introduction

In the context of portfolio construction, trade optimization is the process of managing the transactions necessary to move from one set of portfolio weights to another. These optimizations can play an important role both in the cases of rebalancing as well as in the case of a cash infusion or withdrawal.  The reason for controlling these trades is to try to minimize the explicit (e.g. commission) and implicit (e.g. bid/ask spread and impact) costs associated with trading.

Two approaches are often taken to trade optimization:

  1. Trading costs and constraints are explicitly considered within portfolio construction. For example, a portfolio optimization that seeks to maximize exposure to some alpha source may incorporate explicit measures of transaction costs or constrain the number of trades that are allowed to occur at any given rebalance.
  2. Portfolio construction and trade optimization occur in a two step process. For example, a portfolio optimization may take place that creates the “ideal” portfolio, ignoring consideration of trading constraints and costs. Trade optimization would then occur as a second step, seeking to identify the trades that would move the current portfolio “as close as possible” to the target portfolio while minimizing costs or respecting trade constraints.

These two approaches will not necessarily arrive at the same result. At Newfound, we prefer the latter approach, as we believe it creates more transparency in portfolio construction. Combining trade optimization within portfolio optimization can also lead to complicated constraints, leading to infeasible optimizations.  Furthermore, the separation of portfolio optimization and trade optimization allows us to target the same model portfolio across all strategy implementations, but vary when and how different portfolios trade depending upon account size and costs.

For example, a highly tactical strategy implemented as a pooled vehicle with a large asset base and penny-per-share commissions can likely afford to execute a much higher number of trades than an investor trying to implement the same strategy with $250,000 and $7.99 ticket charges. While implicit and explicit trading costs will create a fixed drag upon strategy returns, failing to implement each trade as dictated by a hypothetical model will create tracking error.

Ultimately, the goal is to minimize the fixed costs while staying within an acceptable distance (e.g. turnover distance or tracking error) of our target portfolio. Often, this goal is expressed by a portfolio manager with a number of semi-ad-hoc constraints or optimization targets. For example:

  • Asset Paring. A constraint that specifies the minimum or maximum number of securities that can be held by the portfolio.
  • Trade Paring. A constraint that specifies the minimum or maximum number of trades that may be executed.
  • Level Paring. A constraint that establishes a minimum level threshold for securities (e.g. securities must be at least 1% of the portfolio) or trades (e.g. all trades must be larger than 0.5%).

Unfortunately, these constraints often turn the portfolio optimization problem from continuous to discrete, which makes the process of optimization more difficult.

2. The Discreteness Problem

Consider the following simplified scenario. Given our current, drifted portfolio weights w_{old} and a new set of target model weights w_{target}, we want to minimize the number of trades we need to execute to bring our portfolio within some acceptable turnover threshold level, \theta. We can define this as the optimization problem:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} 1_{|t_i|}>0 \\ & \text{subject to} & & \sum\limits_{i} |w_{target, i} - (w_{old, i} + t_i)| \le 2 * \theta \\ & & & \sum\limits_{i} t_i = 0 \\ & \text{and} & & t_i \ge -w_{old,i} \end{aligned}

Unfortunately, as we will see below, simply trying to throw this problem into an off-the-shelf convex optimizer, as is, will lead to some potentially odd results. And we have not even introduced any complex paring constraints!

2.1 Example Data

# setup some sample data
tickers = "amj bkln bwx cwb emlc hyg idv lqd \
           pbp pcy pff rem shy tlt vnq vnqi vym".split()

w_target = pandas.Series([float(x) for x in "0.04095391 0.206519656 0 \
                      0.061190655 0.049414401 0.105442705 0.038080766 \
                      0.07004622 0.045115708 0.08508047 0.115974239 \
                      0.076953702 0 0.005797291 0.008955226 0.050530852 \
                      0.0399442".split()], index = tickers)

w_old = pandas.Series([float(x) for x in \
                   "0.058788745 0.25 0 0.098132817 \
                    0 0.134293993 0.06144967 0.102295438 \
                    0.074200473 0 0 0.118318536 0 0 \
                    0.04774768 0 0.054772649".split()], \
                      index = tickers)

n = len(tickers)

w_diff = w_target - w_old

2.2 Applying a Naive Convex Optimizer

The example below demonstrates the numerical issues associated with attempting to solve discrete problems with traditional convex optimizers.  Using the portfolio and target weights established above, we run a naive optimization that seeks to minimize the number of trades necessary to bring our holdings within a 5% turnover threshold from the target weights.

# Try a naive optimization with SLSQP

theta = 0.05
theta_hat = theta + w_diff.abs().sum() / 2.

def _fmin(t):
    return numpy.sum(numpy.abs(t) > 1e-8)

def _distance_constraint(t):
    return theta_hat - numpy.sum(numpy.abs(t)) / 2.

def _sums_to_zero(t):
    return numpy.sum(numpy.square(t))

t0 = w_diff.copy()

bounds = [(-w_old[i], 1) for i in range(0, n)]

result = scipy.optimize.fmin_slsqp(_fmin, t0, bounds = bounds, \
                                   eqcons = [_sums_to_zero], \
                                   ieqcons = [_distance_constraint], \
                                   disp = -1)

result =  pandas.Series(result, index = tickers)

Note that the trades we received are simply w_{target} - w_{old}, which was our initial guess for the optimization.  The optimizer didn’t optimize.

What’s going on? Well, many off-the-shelf optimizers – such as the Sequential Least Squares Programming (SLSQP) approach applied here – will attempt to solve this problem by first estimating the gradient of the problem to decide which direction to move in search of the optimal solution. To achieve this numerically, small perturbations are made to the input vector and their influence on the resulting output is calculated.

In this case, small changes are unlikely to create an influence in the problem we are trying to minimize. Whether the trade is 5% or 5.0001% will have no influence on the *number* of trades executed. So the first derivative will appear to be zero and the optimizer will exit.

Fortunately, with a bit of elbow grease, we can turn this problem into a mixed integer linear programming problem (“MILP”), which have their own set of efficient optimization tools (in this article, we will use the PuLP library for the Python programming language). A MILP is a category of optimization problems that take the standard form:

\begin{aligned} & \text{minimize} & & c^{T}x + h^{T}y \\ & \text{subject to} & & Ax + Gy \le b \\ & \text{and} & & x \in \mathbb{Z}^{n} \end{aligned}

Here b is a vector and A and G are matrices. Don’t worry too much about the form.

The important takeaway is that we need: (1) to express our minimization problem as a linear function and (2) express our constraints as a set of linear inequalities.

But first, for us to take advantage of linear programming tools, we need to eliminate our absolute values and indicator functions and somehow transform them into linear constraints.

3. Linear Programming Transformation Techniques

3.1 Absolute Values

Consider an optimization of the form:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} |x_i| \\ & \text{subject to} & & ... \end{aligned}

To get rid of the absolute value function, we can rewrite the function as a minimization of a new variable, \psi.

\begin{aligned} & \text{minimize} & & \sum\limits_{i} \psi_i \\ & \text{subject to} & & \psi_i \ge x_i \\ & & & \psi_i \ge -x_i \\ & \text{and} & & ... \end{aligned}

The combination of constraints makes it such that \psi_i \ge |x_i|. When x_i is positive, \psi_i is constrained by the first constraint and when x_i is negative, it is constrained by the latter. Since the optimization seeks to minimize the sum of each \psi_i, and we know \psi_i will be positive, the optimizer will reduce \psi_i to equal |x_i|, which is it’s minimum possible value.

Below is an example of this trick in action. Our goal is to minimize the absolute value of some variables x_i. We apply bounds on each x_i to allow the problem to converge on a solution.

lp_problem = LpProblem("Absolute Values", LpMinimize)

x_vars = []
psi_vars = []

bounds = [[1, 7], [-10, 0], [-9, -1], [-1, 5], [6, 9]]

print "Bounds for x: "
print pandas.DataFrame(bounds, columns = ["Left", "Right"])

for i in range(5):
    x_i = LpVariable("x_" + str(i), None, None)
    x_vars.append(x_i)
    
    psi_i = LpVariable("psi_i" + str(i), None, None)
    psi_vars.append(psi_i)
    
lp_problem += lpSum(psi_vars), "Objective"

for i in range(5):
    lp_problem += psi_vars[i] >= -x_vars[i]
    lp_problem += psi_vars[i] >= x_vars[i]
    
    lp_problem += x_vars[i] >= bounds[i][0]
    lp_problem += x_vars[i] <= bounds[i][1]
    
lp_problem.solve()

print "\nx variables"
print pandas.Series([x_i.value() for x_i in x_vars])

print "\npsi Variables (|x|):"
print pandas.Series([psi_i.value() for psi_i in psi_vars])
Bounds for x: 
   Left  Right
0     1      7
1   -10      0
2    -9     -1
3    -1      5
4     6      9

x variables
0    1.0
1    0.0
2   -1.0
3    0.0
4    6.0
dtype: float64

psi Variables (|x|):
0    1.0
1    0.0
2    1.0
3    0.0
4    6.0
dtype: float64

3.2 Indicator Functions

Consider an optimization problem of the form:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} 1_{x_i > 0} \\ & \text{subject to} & & ... \end{aligned}

We can re-write this problem by introducing a new variable, y_i, and adding a set of linear constraints:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} y_i \\ & \text{subject to} & & x_i \le A*y_i\\ & & & y_i \ge 0 \\& & & y_i \le 1 \\ & & & y_i \in \mathbb{Z} \\ & \text{and} & & ... \end{aligned}

Note that the last three constraints, when taken together, tell us that y_i \in \{0, 1\}. The new variable A should be a large constant, bigger than any value of x_i. Let’s assume A = max(x) + 1.

Let’s first consider what happens when x_i \le 0. In such a case, y_i can be set to zero without violating any constraints. When x_i is positive, however, for x_i \le A*y_i to be true, it must be the case that y_i = 1.

What prevents y_i from equalling 1 in the case where x_i \le 0 is the goal of minimizing the sum of y_i, which will force y_i to be 0 whenever possible.

Below is a sample problem demonstrating this trick, similar to the example described in the prior section.

lp_problem = LpProblem("Indicator Function", LpMinimize)

x_vars = []
y_vars = []

bounds = [[-4, 1], [-3, 5], [-6, 1], [1, 7], [-5, 9]]

A = 11    

print "Bounds for x: "
print pandas.DataFrame(bounds, columns = ["Left", "Right"])

for i in range(5):
    x_i = LpVariable("x_" + str(i), None, None)
    x_vars.append(x_i)
    
    y_i = LpVariable("ind_" + str(i), 0, 1, LpInteger)
    y_vars.append(y_i)
    
lp_problem += lpSum(y_vars), "Objective"

for i in range(5):
    lp_problem += x_vars[i] >= bounds[i][0]
    lp_problem += x_vars[i] <= bounds[i][1]
    
    lp_problem += x_vars[i] <= A * y_vars[i]
    
lp_problem.solve()

print "\nx variables"
print pandas.Series([x_i.value() for x_i in x_vars])

print "\ny Variables (Indicator):"
print pandas.Series([y_i.value() for y_i in y_vars])
Bounds for x: 
   Left  Right
0    -4      1
1    -3      5
2    -6      1
3     1      7
4    -5      9

x variables
0   -4.0
1   -3.0
2   -6.0
3    1.0
4   -5.0
dtype: float64

y Variables (Indicator):
0    0.0
1    0.0
2    0.0
3    1.0
4    0.0
dtype: float64

3.3 Tying the Tricks Together

A problem arises when we try to tie these two tricks together, as both tricks rely upon the minimization function itself. The \psi_i are dragged to the absolute value of x_i because we minimize over them. Similarly, y_i is dragged to zero when the indicator should be off because we are minimizing over it.

What happens, however, if we want to solve a problem of the form:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} 1_{|x_i| > 0} \\ & \text{subject to} & & ... \end{aligned}

One way of trying to solve this problem is by using our tricks and then combining the objectives into a single sum.

\begin{aligned} & \text{minimize} & & \sum\limits_{i} y_i + \psi_i \\ & \text{subject to} & & \psi_i \ge x_i \\ & & & \psi_i \ge -x_i \\ & & & x_i \le A*y_i\\ & & & y_i \ge 0 \\ & & & y_i \le 1 \\ & & & y_i \in \mathbb{Z} \\ & \text{and} & & .. \end{aligned}

By minimizing over the sum of both variables, \psi_i is forced towards |x_i| and y_i is forced to zero when \psi_i = 0.

Below is an example demonstrating this solution, again similar to the examples discussed in prior sections.

lp_problem = LpProblem("Absolute Values", LpMinimize)

x_vars = []
psi_vars = []
y_vars = []

bounds = [[-7, 3], [7, 8], [5, 9], [1, 4], [-6, 2]]

A = 11    

print "Bounds for x: "
print pandas.DataFrame(bounds, columns = ["Left", "Right"])

for i in range(5):
    x_i = LpVariable("x_" + str(i), None, None)
    x_vars.append(x_i)
    
    psi_i = LpVariable("psi_i" + str(i), None, None)
    psi_vars.append(psi_i)
    
    y_i = LpVariable("ind_" + str(i), 0, 1, LpInteger)
    y_vars.append(y_i)
    
    
lp_problem += lpSum(y_vars) + lpSum(psi_vars), "Objective"

for i in range(5):
    lp_problem += x_vars[i] >= bounds[i][0]
    lp_problem += x_vars[i] <= bounds[i][1]
    
for i in range(5):
    lp_problem += psi_vars[i] >= -x_vars[i]
    lp_problem += psi_vars[i] >= x_vars[i]
    
    lp_problem += psi_vars[i] <= A * y_vars[i]
    
lp_problem.solve()

print "\nx variables"
print pandas.Series([x_i.value() for x_i in x_vars])

print "\npsi Variables (|x|):"
print pandas.Series([psi_i.value() for psi_i in psi_vars])

print "\ny Variables (Indicator):"
print pandas.Series([y_i.value() for y_i in y_vars])
Bounds for x: 
   Left  Right
0    -7      3
1     7      8
2     5      9
3     1      4
4    -6      2

x variables
0    0.0
1    7.0
2    5.0
3    1.0
4    0.0
dtype: float64

psi Variables (|x|):
0    0.0
1    7.0
2    5.0
3    1.0
4    0.0
dtype: float64

y Variables (Indicator):
0    0.0
1    1.0
2    1.0
3    1.0
4    0.0
dtype: float64

4. Building a Trade Minimization Model

Returning to our original problem,

\begin{aligned} & \text{minimize} & & \sum\limits_{i} 1_{|t_i| > 0} \\ & \text{subject to} & & \sum\limits_{i} |w_{target, i} - (w_{old, i} + t_i)| \le 2 * \theta \\ & & & \sum\limits_{i} t_i = 0 \\ & \text{and} & & t_i \ge -w_{old,i} \end{aligned}

We can now use the tricks we have established above to re-write this problem as:

\begin{aligned} & \text{minimize} & & \sum\limits_{i} (\phi_i + \psi_i + y_i) \\ & \text{subject to} & & \psi_i \ge t_i \\ & & & \psi_i \ge -t_i \\ & & & \psi_i \le A*y_i \\ & & & \phi_i \ge (w_{target,i} - (w_{old,i} + t_i))\\ & & & \phi_i \ge -(w_{target,i} - (w_{old,i} + t_i)) \\ & & & \sum\limits_{i} \phi_i \le 2 * \theta \\ & & & \sum\limits_{i} t_i = 0 \\ & \text{and} & & t_i \ge -w_{old,i} \end{aligned}

While there are a large number of constraints present, in reality there are just a few key steps going on. First, our key variable in question is t_i. We then use our absolute value trick to create \psi_i = |t_i|. Next, we use the indicator function trick to create y_i, which tells us whether each position is traded or not. Ultimately, this is the variable we are trying to minimize.

Next, we have to deal with our turnover constraint. Again, we invoke the absolute value trick to create \phi_i, and replace our turnover constraint as a sum of \phi‘s.

Et voila?

As it turns out, not quite.

Consider a simple two-asset portfolio. The current weights are [0.25, 0.75] and we want to get these weights within 0.05 of [0.5, 0.5] (using the L^1 norm – i.e. the sum of absolute values – as our definition of “distance”).

Let’s consider the solution [0.475, 0.525]. At this point, \phi = [0.025, 0.025] and \psi = [0.225, 0.225]. Is this solution “better” than [0.5, 0.5]? At [0.5, 0.5], \phi = [0.0, 0.0] and \psi = [0.25, 0.25]. From the optimizer’s viewpoint, these are equivalent solutions. Within this region, there are an infinite number of possible solutions.

Yet if we are willing to let some of our tricks “fail,” we can find a solution. If we want to get as close as possible, we effectively want to minimize the sum of \psi‘s. The infinite solutions problem arises when we simultaneously try to minimize the sum of \psi‘s and \phi‘s, which offset each other.

Do we actually need the values of \psi to be correct? As it turns out: no. All we really need is that \psi_i is positive when t_i is non-zero, which will then force y_i to be 1. By minimizing on y_i, \psi_i will still be forced to 0 when t_i = 0.

So if we simply remove \psi_i from the minimization, we will end up reducing the number of trades as far as possible and then reducing the distance to the target model as much as possible given that trade level.

\begin{aligned} & \text{minimize} & & \sum\limits_{i} (\phi_i + y_i) \\ & \text{subject to} & & \psi_i \ge t_i \\ & & & \psi_i \ge -t_i \\ & & & \psi_i \le A*y_i \\ & & & \phi_i \ge (w_{target,i} - (w_{old,i} + t_i))\\ & & & \phi_i \ge -(w_{target,i} - (w_{old,i} + t_i)) \\ & & & \sum\limits_{i} \phi_i \le 2 * \theta \\ & & & \sum\limits_{i} t_i = 0 \\ & \text{and} & & t_i \ge -w_{old,i} \end{aligned}

As a side note, because the sum of \phi‘s will at most equal 2 and the sum of y‘s can equal the number of assets in the portfolio, the optimizer will get more minimization bang for its buck by focusing on reducing the number of trades first before reducing the distance to the target model. This priority can be adjusted by multiplying \phi_i by a sufficiently large scaler in our objective.

theta = 0.05

trading_model = LpProblem("Trade Minimization Problem", LpMinimize)

t_vars = []
psi_vars = []
phi_vars = []
y_vars = []

A = 2
    
for i in range(n):
    t = LpVariable("t_" + str(i), -w_old[i], 1 - w_old[i]) 
    t_vars.append(t)
    
    psi = LpVariable("psi_" + str(i), None, None)
    psi_vars.append(psi)

    phi = LpVariable("phi_" + str(i), None, None)
    phi_vars.append(phi)
    
    y = LpVariable("y_" + str(i), 0, 1, LpInteger) #set y in {0, 1}
    y_vars.append(y)

    
# add our objective to minimize y, which is the number of trades
trading_model += lpSum(phi_vars) + lpSum(y_vars), "Objective"
            
for i in range(n):
    trading_model += psi_vars[i] >= -t_vars[i]
    trading_model += psi_vars[i] >= t_vars[i]
    trading_model += psi_vars[i] <= A * y_vars[i]
    
for i in range(n):
    trading_model += phi_vars[i] >= -(w_diff[i] - t_vars[i])
    trading_model += phi_vars[i] >= (w_diff[i] - t_vars[i])
    
# Make sure our trades sum to zero
trading_model += (lpSum(t_vars) == 0)

# Set our trade bounds
trading_model += (lpSum(phi_vars) / 2. <= theta)

trading_model.solve()

results = pandas.Series([t_i.value() for t_i in t_vars], index = tickers)

print "Number of trades: " + str(sum([y_i.value() for y_i in y_vars]))

print "Turnover distance: " + str((w_target - (w_old + results)).abs().sum() / 2.)
Number of trades: 12.0
Turnover distance: 0.032663284500000014

5. A Sector Rotation Example

As an example of applying trade paring,  we construct a sample sector rotation strategy.  The investment universe consists of nine sector ETFs (XLB, XLE, XLF, XLI, XLK, XLU, XLV and XLY).  The sectors are ranked by their 12-1 month total returns and the portfolio holds the four top-ranking ETFs in equal weight.  To reduce timing luck, we apply a four-week tranching process.

We construct three versions of the strategy.

  • Naive: A version which rebalances back to hypothetical model weights on a weekly basis.
  • Filtered: A version that rebalances back to hypothetical model weights when drifted portfolio weights exceed a 5% turnover distance from target weights.
  • Trade Pared: A version that applies trade paring to rebalance back to within a 1% turnover distance from target weights when drifted weights exceed a 5% turnover distance from target weights.

The equity curves and per-year trade counts are plotted for each version below.  Note that the equity curves do not account for any implicit or explicit trading costs.

Data Source: CSI. Calculations by Newfound Research. Past performance does not guarantee future results.  All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses.  Index returns include the reinvestment of dividends.  No index is meant to measure any strategy that is or ever has been managed by Newfound Research.   The indices were constructed by Newfound in August 2018 for purposes of this analysis and are therefore entirely backtested and not investment strategies that are currently managed and offered by Newfound.

For the reporting period covering full years (2001 – 2017), the trade filtering process alone reduced the average number of annual trades by 40.6% (from 255.7 to 151.7).  The added trade paring process reduced the number of trades another 50.9% (from 151.7 to 74.5), for a total reduction of 70.9%.

6. Possible Extensions & Limitations

There are a number of extensions that can be made to this model, including:

  • Accounting for trading costs. Instead of minimizing the number of trades, we could minimize the total cost of trading by multiplying each trade against an estimate of cost (including bid/ask spread, commission, and impact).
  • Forcing accuracy. There may be positions for which more greater drift can be permitted and others where drift is less desired. This can be achieved by adding specific constraints to our \phi_i variables.

Unfortunately, there are also a number of limitations. The first set is due to the fact we are formulating our optimization as a linear program. This means that quadratic constraints or objectives, such as tracking error constraints, are forbidden. The second set is due to the complexity of the optimization problem. While the problem may be technically solvable, problems containing a large number of securities and constraints may be time infeasible.

6.1 Non-Linear Constraints

In the former case, we can choose to move to a mixed integer quadratic programming framework. Or, we can also employ multi-step heuristic methods to find feasible, though potentially non-optimal, solutions.

For example, consider the case where we wish our optimized portfolio to fall within a certain tracking error constraint of our target portfolio. Prior to optimization, the marginal contribution to tracking error can be calculated for each asset and the total current tracking error can be calculated. A constraint can then be added such that the current tracking error minus the sum of weighted marginal contributions must be less than the tracking error target. After the optimization is complete, we can determine whether our solution meets the tracking error constraint.

If it does not, we can use our solution as our new w_{old}, re-calculate our tracking error and marginal contribution figures, and re-optimize. This iterative approach approximates a gradient descent approach.

In the example below, we introduce a covariance matrix and seek to target a solution whose tracking error is less than 0.25%.

covariance_matrix = [[ 3.62767735e-02,  2.18757921e-03,  2.88389154e-05,
         7.34489308e-03,  1.96701876e-03,  4.42465667e-03,
         1.12579361e-02,  1.65860525e-03,  5.64030644e-03,
         2.76645571e-03,  3.63015800e-04,  3.74241173e-03,
        -1.35199744e-04, -2.19000672e-03,  6.80914121e-03,
         8.41701096e-03,  1.07504229e-02],
       [ 2.18757921e-03,  5.40346050e-04,  5.52196510e-04,
         9.03853792e-04,  1.26047511e-03,  6.54178355e-04,
         1.72005989e-03,  3.60920296e-04,  4.32241813e-04,
         6.55664695e-04,  1.60990263e-04,  6.64729334e-04,
        -1.34505970e-05, -3.61651337e-04,  6.56663689e-04,
         1.55184724e-03,  1.06451898e-03],
       [ 2.88389154e-05,  5.52196510e-04,  4.73857357e-03,
         1.55701811e-03,  6.22138578e-03,  8.13498400e-04,
         3.36654245e-03,  1.54941008e-03,  6.19861236e-05,
         2.93028853e-03,  8.70115005e-04,  4.90113403e-04,
         1.22200026e-04,  2.34074752e-03,  1.39606650e-03,
         5.31970717e-03,  8.86435533e-04],
       [ 7.34489308e-03,  9.03853792e-04,  1.55701811e-03,
         4.70643696e-03,  2.36059044e-03,  1.45119740e-03,
         4.46141908e-03,  8.06488179e-04,  2.09341490e-03,
         1.54107719e-03,  6.99000273e-04,  1.31596059e-03,
        -2.52039718e-05, -5.18390335e-04,  2.41334278e-03,
         5.14806453e-03,  3.76769305e-03],
       [ 1.96701876e-03,  1.26047511e-03,  6.22138578e-03,
         2.36059044e-03,  1.26644146e-02,  2.00358907e-03,
         8.04023724e-03,  2.30076077e-03,  5.70077091e-04,
         5.65049374e-03,  9.76571021e-04,  1.85279450e-03,
         2.56652171e-05,  1.19266940e-03,  5.84713900e-04,
         9.29778319e-03,  2.84300900e-03],
       [ 4.42465667e-03,  6.54178355e-04,  8.13498400e-04,
         1.45119740e-03,  2.00358907e-03,  1.52522064e-03,
         2.91651452e-03,  8.70569737e-04,  1.09752760e-03,
         1.66762294e-03,  5.36854007e-04,  1.75343988e-03,
         1.29714019e-05,  9.11071171e-05,  1.68043070e-03,
         2.42628131e-03,  1.90713194e-03],
       [ 1.12579361e-02,  1.72005989e-03,  3.36654245e-03,
         4.46141908e-03,  8.04023724e-03,  2.91651452e-03,
         1.19931947e-02,  1.61222907e-03,  2.75699780e-03,
         4.16113427e-03,  6.25609018e-04,  2.91008175e-03,
        -1.92908806e-04, -1.57151126e-03,  3.25855486e-03,
         1.06990068e-02,  6.05007409e-03],
       [ 1.65860525e-03,  3.60920296e-04,  1.54941008e-03,
         8.06488179e-04,  2.30076077e-03,  8.70569737e-04,
         1.61222907e-03,  1.90797844e-03,  6.04486114e-04,
         2.47501106e-03,  8.57227194e-04,  2.42587888e-03,
         1.85623409e-04,  2.91479004e-03,  3.33754926e-03,
         2.61280946e-03,  1.16461350e-03],
       [ 5.64030644e-03,  4.32241813e-04,  6.19861236e-05,
         2.09341490e-03,  5.70077091e-04,  1.09752760e-03,
         2.75699780e-03,  6.04486114e-04,  2.53455649e-03,
         9.66091919e-04,  3.91053383e-04,  1.83120456e-03,
        -4.91230334e-05, -5.60316891e-04,  2.28627416e-03,
         2.40776877e-03,  3.15907037e-03],
       [ 2.76645571e-03,  6.55664695e-04,  2.93028853e-03,
         1.54107719e-03,  5.65049374e-03,  1.66762294e-03,
         4.16113427e-03,  2.47501106e-03,  9.66091919e-04,
         4.81734656e-03,  1.14396535e-03,  3.23711266e-03,
         1.69157413e-04,  3.03445975e-03,  3.09323955e-03,
         5.27456576e-03,  2.11317800e-03],
       [ 3.63015800e-04,  1.60990263e-04,  8.70115005e-04,
         6.99000273e-04,  9.76571021e-04,  5.36854007e-04,
         6.25609018e-04,  8.57227194e-04,  3.91053383e-04,
         1.14396535e-03,  1.39905835e-03,  2.01826986e-03,
         1.04811491e-04,  1.67653296e-03,  2.59598793e-03,
         1.01532651e-03,  2.60716967e-04],
       [ 3.74241173e-03,  6.64729334e-04,  4.90113403e-04,
         1.31596059e-03,  1.85279450e-03,  1.75343988e-03,
         2.91008175e-03,  2.42587888e-03,  1.83120456e-03,
         3.23711266e-03,  2.01826986e-03,  1.16861730e-02,
         2.24795908e-04,  3.46679680e-03,  8.38606091e-03,
         3.65575720e-03,  1.80220367e-03],
       [-1.35199744e-04, -1.34505970e-05,  1.22200026e-04,
        -2.52039718e-05,  2.56652171e-05,  1.29714019e-05,
        -1.92908806e-04,  1.85623409e-04, -4.91230334e-05,
         1.69157413e-04,  1.04811491e-04,  2.24795908e-04,
         5.49990619e-05,  5.01897963e-04,  3.74856789e-04,
        -8.63113243e-06, -1.51400879e-04],
       [-2.19000672e-03, -3.61651337e-04,  2.34074752e-03,
        -5.18390335e-04,  1.19266940e-03,  9.11071171e-05,
        -1.57151126e-03,  2.91479004e-03, -5.60316891e-04,
         3.03445975e-03,  1.67653296e-03,  3.46679680e-03,
         5.01897963e-04,  8.74709395e-03,  6.37760454e-03,
         1.74349274e-03, -1.26348683e-03],
       [ 6.80914121e-03,  6.56663689e-04,  1.39606650e-03,
         2.41334278e-03,  5.84713900e-04,  1.68043070e-03,
         3.25855486e-03,  3.33754926e-03,  2.28627416e-03,
         3.09323955e-03,  2.59598793e-03,  8.38606091e-03,
         3.74856789e-04,  6.37760454e-03,  1.55034038e-02,
         5.20888498e-03,  4.17926704e-03],
       [ 8.41701096e-03,  1.55184724e-03,  5.31970717e-03,
         5.14806453e-03,  9.29778319e-03,  2.42628131e-03,
         1.06990068e-02,  2.61280946e-03,  2.40776877e-03,
         5.27456576e-03,  1.01532651e-03,  3.65575720e-03,
        -8.63113243e-06,  1.74349274e-03,  5.20888498e-03,
         1.35424275e-02,  5.49882762e-03],
       [ 1.07504229e-02,  1.06451898e-03,  8.86435533e-04,
         3.76769305e-03,  2.84300900e-03,  1.90713194e-03,
         6.05007409e-03,  1.16461350e-03,  3.15907037e-03,
         2.11317800e-03,  2.60716967e-04,  1.80220367e-03,
        -1.51400879e-04, -1.26348683e-03,  4.17926704e-03,
         5.49882762e-03,  7.08734925e-03]]

covariance_matrix = pandas.DataFrame(covariance_matrix, \
                                     index = tickers, \
                                     columns = tickers)
theta = 0.05
target_te = 0.0025

w_old_prime = w_old.copy()

# calculate the difference from the target portfolio
# and use this difference to estimate tracking error 
# and marginal contribution to tracking error ("mcte")
z = (w_old_prime - w_target)
te = numpy.sqrt(z.dot(covariance_matrix).dot(z))
mcte = (z.dot(covariance_matrix)) / te

while True:
    w_diff_prime = w_target - w_old_prime

    trading_model = LpProblem("Trade Minimization Problem", LpMinimize)

    t_vars = []
    psi_vars = []
    phi_vars = []
    y_vars = []

    A = 2

    for i in range(n):
        t = LpVariable("t_" + str(i), -w_old_prime[i], 1 - w_old_prime[i]) 
        t_vars.append(t)

        psi = LpVariable("psi_" + str(i), None, None)
        psi_vars.append(psi)

        phi = LpVariable("phi_" + str(i), None, None)
        phi_vars.append(phi)

        y = LpVariable("y_" + str(i), 0, 1, LpInteger) #set y in {0, 1}
        y_vars.append(y)


    # add our objective to minimize y, which is the number of trades
    trading_model += lpSum(phi_vars) + lpSum(y_vars), "Objective"

    for i in range(n):
        trading_model += psi_vars[i] >= -t_vars[i]
        trading_model += psi_vars[i] >= t_vars[i]
        trading_model += psi_vars[i] <= A * y_vars[i]

    for i in range(n):
        trading_model += phi_vars[i] >= -(w_diff_prime[i] - t_vars[i])
        trading_model += phi_vars[i] >= (w_diff_prime[i] - t_vars[i])

    # Make sure our trades sum to zero
    trading_model += (lpSum(t_vars) == 0)
    
    # Set tracking error limit
    #    delta(te) = mcte * delta(z) 
    #              = mcte * ((w_old_prime + t - w_target) - 
    #                        (w_old_prime - w_target)) 
    #              = mcte * t
    #    te + delta(te) <= target_te
    #    ==> delta(te) <= target_te - te
    trading_model += (lpSum([mcte.iloc[i] * t_vars[i] for i in range(n)]) \
                              <= (target_te - te))

    # Set our trade bounds
    trading_model += (lpSum(phi_vars) / 2. <= theta)

    trading_model.solve()
    
    # update our w_old' with the current trades
    results = pandas.Series([t_i.value() for t_i in t_vars], index = tickers)
    w_old_prime = (w_old_prime + results)
    
    z = (w_old_prime - w_target)
    te = numpy.sqrt(z.dot(covariance_matrix).dot(z))
    mcte = (z.dot(covariance_matrix)) / te
    
    if te < target_te:
        break
        
print "Tracking error: " + str(te) 

# since w_old' is an iterative update,
# the current trades only reflect the updates from
# the prior w_old'.  Thus, we need to calculate
# the trades by hand
results = (w_old_prime - w_old)
n_trades = (results.abs() > 1e-8).astype(int).sum()

print "Number of trades: " + str(n_trades)

print "Turnover distance: " + str((w_target - (w_old + results)).abs().sum() / 2.)
Tracking error: 0.0016583319880074485
Number of trades: 13
Turnover distance: 0.01624453350000001

6.2 Time Constraints

For time feasibility, heuristic approaches can be employed in effort to rapidly converge upon a “close enough” solution. For example, Rong and Liu (2011) discuss “build-up” and “pare-down” heuristics.

The basic algorithm of “pare-down” is:

  1. Start with a trade list that includes every security
  2. Solve the optimization problem in its unconstrained format, allowing trades to occur only for securities in the trade list.
  3. If the solution meets the necessary constraints (e.g. maximum number of trades, trade size thresholds, tracking error constraints, etc), terminate the optimization.
  4. Eliminate from the trade list a subset of securities based upon some measure of trade utility (e.g. violation of constraints, contribution to tracking error, etc).
  5. Go to step 2.

The basic algorithm of “build-up” is:

  1. Start with an empty trade list
  2. Add a subset of securities to the trade list based upon some measure of trade utility.
  3. Solve the optimization problem in its unconstrained format, allowing trades to occur only for securities in the trade list.
  4. If the solution meets the necessary constraints (e.g. maximum number of trades, trade size thresholds, tracking error constraints, etc), terminate the optimization.
  5. Go to step 2.

These two heuristics can even be combined in an integrated fashion. For example, a binary search approach can be employed, where the initial trade list list is filled with 50% of the tradable securities. Depending upon success or failure of the resulting optimization, a pare-down or build-up approach can be taken to either prune or expand the trade list.

7. Conclusion

In this research note we have explored the practice of trade optimization, which seeks to implement portfolio changes in as few trade as possible.  While a rarely discussed detail of portfolio management, trade optimization has the potential to eliminate unnecessary trading costs – both explicit and implicit – that can be a drag on realized investor performance.

Constraints within the practice of trade optimization typically fall into one of three categories: asset paring, trade paring, and level paring.  Asset paring restricts the number of securities the portfolio can hold, trade paring restricts the number of trades that can be made, and level paring restricts the size of positions and trades.  Introducing these constraints often turns an optimization into a discrete problem, making it much more difficult to solve for traditional convex optimizations.

With this in mind, we introduced mixed-integer linear programming (“MILP”) and explore a few techniques that can be utilized to transform non-linear functions into a set of linear constraints.  We then combined these transformations to develop a simple trade optimization framework that can be solved using MILP optimizers.

To offer numerical support in the discussion, we created a simple momentum-based sector rotation strategy.  We found that naive turnover-filtering helped reduce the number of trades executed by 50%, while explicit trade optimization reduced the number of trades by 70%.

Finally, we explored how our simplified framework could be further extended to account for both non-linear functional constraints (e.g. tracking error) and operational constraints (e.g. managing execution time).

The paring constraints introduced by trade optimization often lead to problems that are difficult to solve.  However, when we consider that the cost of trading is a very real drag on the results realized by investors, we believe that the solutions are worth pursuing.

 

The State of Risk Management

This post is available as PDF download here

Summary

  • We compare and contrast different approaches to risk managing equity exposure; including fixed income, risk parity, managed futures, tactical equity, and options-based strategies; over the last 20 years.
  • We find that all eight strategies studied successfully reduce risk, while six of the eight strategies improve risk-adjusted returns. The lone exceptions are two options-based strategies that involve being long volatility and therefore are on the wrong side of the volatility risk premium.
  • Over time, performance of the risk management strategies varies significantly both relative to the S&P 500 and compared to the other strategies. Generally, risk-managed strategies tend to behave like insurance, underperforming on the upside and outperforming on the downside.
  • Diversifying your diversifiers by blending a number of complementary risk-managed strategies together can be a powerful method of improving long-term outcomes. The diversified approach to risk management shows promise in terms of reducing sequence risk for those investors nearing or in retirement.

I was perusing Twitter the other day and came across this tweet from Jim O’Shaughnessy, legendary investor and author of What Works on Wall Street.

As always. Jim’s wisdom is invaluable.  But what does this idea mean for Newfound as a firm?  Our first focus is on managing risk.  As a result, one of the questions that we MUST know the answer to is how to get more investors comfortable with sticking to a risk management plan through a full market cycle.

Unfortunately, performance chasing seems to us to be just as prevalent in risk management as it is in investing as a whole.  The benefits of giving up some upside participation in exchange for downside protection seemed like a no brainer in March of 2009.  After 8+ years of strong equity market returns (although it hasn’t always been as smooth of a ride as the market commentators may make you think), the juice may not quite seem worth the squeeze.

While we certainly don’t profess to know the answer to our burning question from above, we do think the first step towards finding one is a thorough understanding on the risk management landscape.  In that vein, this week we will update our State of Risk Management presentation from early 2016.

We examine eight strategies that roughly fit into four categories:

  • Diversification Strategies: strategic 60/40 stock/bond mix1 and risk parity2
  • Options Strategies: equity collar3, protective put4, and put-write5
  • Equity Strategies: long-only defensive equity that blends a minimum volatility strategy6, a quality strategy7, and a dividend growth strategy8 in equal weights
  • Trend-Following Strategies: managed futures9 and tactical equity10

The Historical Record

We find that over the period studied (December 1997 to July 2018) six of the eight strategies outperform the S&P 500 on a risk-adjusted basis both when we define risk as volatility and when we define risk as maximum drawdown.  The two exceptions are the equity collar strategy and the protective put strategy.  Both of these strategies are net long options and therefore are forced to pay the volatility risk premium.  This return drag more than offsets the reduction of losses on the downside.

Data Source: Bloomberg, CSI. Calculations by Newfound Research. Past performance does not guarantee future results. Volatility is a statistical measure of the amount of variation around the average returns for a security or strategy. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends. No index is meant to measure any strategy that is or ever has been managed by Newfound Research. The Tactical Equity strategy was constructed by Newfound in August 2018 for purposes of this analysis and is therefore entirely backtested and not an investment strategy that is currently managed and offered by Newfound.

 

Data Source: Bloomberg, CSI. Calculations by Newfound Research. Past performance does not guarantee future results. Drawdown is a statistical measure of the losses experienced by a security or strategy relative to its historical maximum. The maximum drawdown is the largest drawdown over the security or strategy’s history. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends. No index is meant to measure any strategy that is or ever has been managed by Newfound Research. The Tactical Equity strategy was constructed by Newfound in August 2018 for purposes of this analysis and is therefore entirely backtested and not an investment strategy that is currently managed and offered by Newfound.

 

Not Always a Smooth Ride

While it would be nice if this outperformance accrued steadily over time, reality is quite a bit messier.  All eight strategies exhibit significant variation in their rolling one-year returns vs. the S&P 500.  Interestingly, the two strategies with the widest ranges of historical one-year performance vs. the S&P 500 are also the two strategies that have delivered the most downside protection (as measured by maximum drawdown).  Yet another reminder that there is no free lunch in investing.  The more aggressively you wish to reduce downside capture, the more short-term tracking error you must endure.

Relative 1-Year Performance vs. S&P 500 (December 1997 to July 2018)

Data Source: Bloomberg, CSI. Calculations by Newfound Research. Past performance does not guarantee future results. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends. No index is meant to measure any strategy that is or ever has been managed by Newfound Research. The Tactical Equity strategy was constructed by Newfound in August 2018 for purposes of this analysis and is therefore entirely backtested and not an investment strategy that is currently managed and offered by Newfound.

 

Thinking of Risk Management as (Uncertain) Portfolio Insurance

When we examine this performance dispersion across different market environments, we find a totally intuitive result: risk management strategies generally underperform the S&P 500 when stocks advance and outperform the S&P 500 when stocks decline.  The hit rate for the risk management strategies relative to the S&P 500 is 81.2% in the four years that the S&P 500 was down (2000, 2001, 2002, and 2008) and 19.8% in the seventeen years that the S&P was up.

In this way, risk management strategies are akin to insurance.  A premium, in the form of upside capture ratios less than 100%, is paid in exchange for a (hopeful) reduction in downside capture.

With this perspective, it’s totally unsurprising that these strategies have underperformed since the market bottomed during the global market crisis.   Seven of the eight strategies (with the long-only defensive equity strategy being the lone exception) underperformed the S&P 500 on an absolute return basis and six of the eight strategies (with defensive equity and the 60/40 stock/bond blend) underperformed on a risk-adjusted basis.

Annual Out/Underperformance Relative to S&P 500 (December 1997 to July 2018)

Data Source: Bloomberg, CSI. Calculations by Newfound Research. Past performance does not guarantee future results. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends. No index is meant to measure any strategy that is or ever has been managed by Newfound Research. The Tactical Equity strategy was constructed by Newfound in August 2018 for purposes of this analysis and is therefore entirely backtested and not an investment strategy that is currently managed and offered by Newfound.

 

Diversifying Your Diversifiers

The good news is that there is significant year-to-year variation in the performance across strategies, as evidenced by the periodic table of returns above, suggesting there are diversification benefits to be harvested by allocating to multiple risk management strategies.  The average annual performance differential between the best performing strategy and the worst performing strategy is 20.0%.  This spread was less than 10% in only 3 of the 21 years studied.

We see the power of diversifying your diversifiers when we test simple equal-weight blends of the risk management strategies.  Both blends have higher Sharpe Ratios than 7 of the 8 individual strategies and higher excess return to drawdown ratios than 6 of the eight individual strategies.

This is a very powerful result, indicating that naïve diversification is nearly as good as being able to pick the best individual strategies with perfect foresight.

Data Source: Bloomberg, CSI. Calculations by Newfound Research. Past performance does not guarantee future results. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends. No index is meant to measure any strategy that is or ever has been managed by Newfound Research. The Tactical Equity strategy was constructed by Newfound in August 2018 for purposes of this analysis and is therefore entirely backtested and not an investment strategy that is currently managed and offered by Newfound.

 

Why Bother with Risk Management in the First Place?

As we’ve written about previously, we believe that for most investors investing “failure” means not meeting one’s financial objectives.  In the portfolio management context, failure comes in two flavors.  “Slow” failure results from taking too little risk, while “fast” failure results from taking too much risk.

In this book, Red Blooded Risk, Aaron Brown summed up this idea nicely: “Taking less risk than is optimal is not safer; it just locks in a worse outcome.  Taking more risk than is optimal also results in a worst outcome, and often leads to complete disaster.”

Risk management is not synonymous with risk reduction.  It is about taking the right amount of risk, not too much or too little.

Having a pre-defined risk management plan in place before a crisis can help investors avoid panicked decisions that can turn a bad, but survivable event into catastrophe (e.g. the retiree that sells all of his equity exposure in early 2009 and then stays out of the market for the next five years).

It’s also important to remember that individuals are not institutions.  They have a finite investment horizon.  Those that are at or near retirement are exposed to sequence risk, the risk of experiencing a bad investment outcome at the wrong time.

We can explore sequence risk using Monte Carlo simulation.  We start by assessing the S&P 500 with no risk management overlay and assume a 30-year retirement horizon.  The simulation process works as follows:

  1. Randomly choose a sequence of 30 annual returns from the set of actual annual returns over the period we studied (December 1998 to July 2018).
  2. Adjust returns for inflation.
  3. For the sequence of returns chosen, calculate the perfect withdrawal rate (PWR). Clare et al, 2016 defines the PWR as “the withdrawal rate that effectively exhausts wealth at death (or at the end of a fixed period, known period) if one had perfect foresight of all returns over the period.11
  4. Return to #1, repeating 1000 times in total.

We plot the distribution of PWRs for the S&P 500 below.  While the average PWR is a respectable 5.7%, the range of outcomes is very wide (0.6% to 14.7%).  The 95 percent confidence interval around the mean is 2.0% to 10.3%.  This is sequence risk.  Unfortunately, investors do not have the luxury of experiencing the average, they only see one draw.  Get lucky and you may get to fund a better lifestyle than you could have imagined with little to no financial stress.  Get unlucky and you may have trouble paying the bills and will be sweating every market move.

Calculations by Newfound Research. Past performance does not guarantee future results. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends.

 

Next, we repeat the simulation, replacing the pure S&P 500 exposure with the equal-weight blend of risk management strategies excluding the equity collar and the protective put.  We see quite a different result.  The average PWR is similar (6.2% to 5.7%), but the range of outcomes is much smaller (95% confidence interval from 4.4% to 8.1%).  At its very core, this is what implementing a risk management plan is all about.  Reducing the role of investment luck in financial planning.  We give up some of the best outcomes (in the right tail of the S&P 500 distribution) in exchange for reducing the probability of the very worst outcomes (in the left tail).

Calculations by Newfound Research. Past performance does not guarantee future results. All returns are hypothetical index returns. You cannot invest directly in an index and unmanaged index returns do not reflect any fees, expenses, sales charges, or trading expenses. Index returns include the reinvestment of dividends.

Conclusion

There is no holy grail when it comes to risk management.  While a number of approaches have historically delivered strong results, each comes with its own pros and cons.

In an uncertain world where we cannot predict exactly what the next crisis will look like, diversifying your diversifiers by combining a number of complementary risk-managed strategies may be a prudent course of action. We believe that this type of balanced approach has the potential to deliver compelling results over a full market cycle while managing the idiosyncratic risk of any one manager or strategy.

Diversification can also help to increase the odds of an investor sticking with their risk management plan as the short-term performance lows won’t be quite as low as they would be with a single strategy (conversely, the highs won’t be as high either).

That being said, having the discipline to stick with a risk management plan also requires being realistic.  While it would be great to build a strategy with 100% upside and 0% downside, such an outcome is unrealistic.  Risk-managed strategies tend to behave a lot like uncertain insurance for the portfolio.  A premium, in the form of upside capture ratios less than 100%, is paid in exchange for a (hopeful) reduction in downside capture.  This upside underperformance is a feature, not a bug.  Trying too hard to correct it may lead to overfit strategies fail to deliver adequate protection on the downside.

Measuring Process Diversification in Trend Following

This post is available as a PDF download here.

Summary­

  • We prefer to think about diversification in a three-dimensional framework: what, how, and when.
  • The “how” axis covers the process with which an investment decision is made.
  • There are a number of models that trend-followers might use to capture a trend. For example, trend-followers might employ a time-series momentum model, a price-minus moving average model, or a double moving average cross-over model.
  • Beyond multiple models, each model can have a variety of parameterizations. For example, a time-series momentum model can just as equally be applied with a 3-month formation period as an 18-month period.
  • In this commentary, we attempt to measure how much diversification opportunity is available by employing multiple models with multiple parameterizations in a simple long/flat trend-following process.

When investors talk about diversification, they typically mean across different investments.  Do not just by a single stock, for example, buy a basket of stocks in order to diversify away the idiosyncratic risk.

We call this “what” diversification (i.e. “what are you buying?”) and believe this is only one of three meaningful axes of diversification for investors.  The other two are “how” (i.e. “how are you making your decision?”) and “when” (i.e. “when are you making your decision?”).  In recent years, we have written a great deal about the “when” axis, and you can find a summary of that research in our commentary Quantifying Timing Luck.

In this commentary, we want to discuss the potential benefits of diversifying across the “how” axis in trend-following strategies.

But what, exactly, do we mean by this?  Consider that there are a number of ways investors can implement trend-following signals.  Some popular methods include:

  • Prior total returns (“time-series momentum”)
  • Price-minus-moving-average (e.g. price falls below the 200-day moving average)
  • Moving-average double cross-over (e.g. the 50-day moving average crosses the 200-day moving average)
  • Moving-average change-in-direction (e.g. the 200-day moving average slope turns positive or negative)

As it turns out, these varying methodologies are actually cousins of one another.  Recent research has established that these models can, more or less, be thought of as different weighting schemes of underlying returns.  For example, a time-series momentum model (with no skip month) derives its signal by averaging daily log returns over the lookback period equally.

With this common base, a number of papers over the last decade have found significant relationships between the varying methods.  For example:

 

Evidence
Bruder, Dao, Richard, and Roncalli (2011)Moving-average-double-crossover is just an alternative weighting scheme for time-series momentum.
Marshall, Nguyen and Visaltanachoti (2014)Time-series momentum is related to moving-average-change-in-direction.
Levine and Pedersen (2015)Time-series-momentum and moving-average cross-overs are highly related; both methods perform similarly on 58 liquid futures contracts.
Beekhuizen and Hallerbach (2015)Mathematically linked moving averages with prior returns.
Zakamulin (2015)Price-minus-moving-average, moving-average-double-cross-over, and moving-average-change-of-direction can all be interpreted as a computation of a weighted moving average of momentum rules.

 

As we have argued in past commentaries, we do not believe any single method is necessarily superior to another.  In fact, it is trivial to evaluate these methods over different asset classes and time-horizons and find an example that proves that a given method provides the best result.

Without a crystal ball, however, and without any economic interpretation why one might be superior to another, the choice is arbitrary.  Yet the choice will ultimately introduce randomness into our results: a factor we like to call “process risk.”  A question we should ask ourselves is, “if we have no reason to believe one is better than another, why would we pick one at all?”

We like to think of it this way: ex-post, we will know whether the return over a given period is positive or negative.  Ex-ante, all we have is a handful of trend-following signals that are forecasting that direction.  If, historically, all of these trend signals have been effective, then there may be no reason to necessarily believe on over another.

Combining them, in many ways, is sort of like trying to triangulate on the truth. We have a number of models that all look at the problem from a slightly different perspective and, therefore, provide a slightly different interpretation.  A (very) loose analogy might be using the collective information from a number of cell towers in effort to pinpoint the geographic location of a cellphone.

We may believe that all of the trend models do a good job of identifying trends over the long run, but most will prove false from time-to-time in the short-run. By using them together, we can potentially increase our overall confidence when the models agree and decrease our confidence when they do not.

With all this in mind, we want to explore the simple question: “how much potential benefit does process diversification bring us?”

The Setup

To answer this question, we first generate a number of long/flat trend following strategies that invest in a broad U.S. equity index or the risk-free rate (both provided by the Kenneth French database and ranging from 1926 to 2018). There are 48 strategy variations in total constructed through a combination of four difference processes – time-series momentum, price-minus-moving-average, and moving-average double cross-over– and 16 different lookback periods (from the approximate equivalent of 3-to-18 months).

We then treat each of the 64 variations as its own unique asset.

To measure process diversification, we are going to use the concept of “independent bets.” The greater the number of independent bets within a portfolio, the greater the internal diversification. Below are a couple examples outlining the basic intuition for a two-asset portfolio:

  • If we have a portfolio holding two totally independent assets with similar volatility levels, a 50% allocation to each would maximize our diversification.Intuitively, we have equally allocated across two unique bets.
  • If we have a portfolio holding two totally independent assets with similar volatility levels, a 90% allocation to one asset and a 10% allocation to another would lead us to a highly concentrated bet.
  • If we have a portfolio holding two highly correlated assets, no matter the allocation split, we have a large, concentrated bet.
  • If we have a portfolio of two assets with disparate volatility levels, we will have a large concentrated bet unless the lower volatility asset comprises the vast majority of the portfolio.

To measure this concept mathematically, we are going to use the fact that the square of the “diversification ratio” of a portfolio is equal to the number of independent bets that portfolio is taking.1

Diversifying Parameterization Risk

Within process diversification, the first variable we can tweak is the formation period of our trend signal.  For example, if we are using a time-series momentum model that simply looks at the sign of the total return over the prior period, the length of that period may have a significant influence in the identification of a trend.  Intuition tells us that shorter formation periods might identify short-term trends as well as react to long-term trend changes more quickly but may be more sensitive to whipsaw risk.

To explore the diversification opportunities available to us simply by varying our formation parameterization, we build equal-weight portfolios comprised of two strategies at a time, where each strategy utilizes the same trend model but a different parameterization.  We then measure the number of independent bets in that combination.

We run this test for each trend following process independently.  As an example, we compare using a shorter lookback period with a longer lookback period in the context of time-series momentum in isolation. We will compare across models in the next section.

In the graphs below, L0 through L15 represent the lookback periods, with L0 being the shortest lookback period and L15 representing the longest lookback period.

As we might suspect, the largest increase in available bets arises from combining shorter formation periods with longer formation periods.  This makes sense, as they represent the two horizons that share the smallest proportion of data and therefore have the least “information leakage.” Consider, for example, a time-series momentum signal that has a 4-monnth lookback and one with an 8-month lookback. At all times, 50% of the information used to derive the latter model is contained within the former model.  While the technical details are subtler, we would generally expect that the more informational overlap, the less diversification is available.

We can see that combining short- and long-term lookbacks, the total number of bets the portfolio is taking from 1.0 to approximately 1.2.

This may not seem like a significant lift, but we should remember Grinold and Kahn’s Fundamental Law of Active Management:

Information Ratio = Information Coefficient x SQRT(Independent Bets)

Assuming the information coefficient stays the same, an increase in the number of independent bets from 1.0 to 1.2 increases our information ratio by approximately 10%.  Such is the power of diversification.

Another interesting way to approach this data is by allowing an optimizer to attempt to maximize the diversification ratio.  In other words, instead of only looking at naïve, equal-weight combinations of two processes at a time, we can build a portfolio from all available lookback variations.

Doing so may provide two interesting insights.

First, we can see how the optimizer might look to combine different variations to maximize diversification.  Will it barbell long and short lookbacks, or is there benefit to including medium lookbacks? Will the different processes have different solutions?  Second, by optimizing over the full history of data, we can find an upper limit threshold to the number of independent bets we might be able to capture if we had a crystal ball.

A few takeaways from the graphs above:

  • Almost all of the processes barbell short and long lookback horizons to maximize diversification.
  • The optimizer finds value, in most cases, in introducing medium-term lookback horizons as well. We can see for Time-Series MOM, the significant weights are placed on L0, L1, L6, L10, and L15.  While not perfectly spaced or equally weighted, this still provides a strong cross-section of available information.  Double MA Cross-Over, on the other hand, finds value in weighting L0, L8, and L15.
  • While the optimizer increases the number of independent bets in all cases versus a naïve, equal-weight approach, the pickup is not incredibly dramatic. At the end of the day, a crystal ball does not find a meaningfully better solution than our intuition may provide.

Diversifying Model Risk

Similar to the process taken in the above section, we will now attempt to quantify the benefits of cross-process diversification.

For each trend model, we will calculate the number of independent bets available by combining it with another trend model but hold the lookback period constant. As an example, we will combine the shortest lookback period of the Time-Series MOM model with the shortest lookback period of the MA Double Cross-Over.

We plot the results below of the number of independent bets available through a naïve, equal-weight combination.

We can see that model combinations can lift the number of independent bets from by 0.05 to 0.1.  Not as significant as the theoretical lift from parameter diversification, but not totally insignificant.

Combining Model and Parameterization Diversification

We can once again employ our crystal ball in an attempt to find an upper limit to the diversification available to trend followers, as well as the process / parameterization combinations that will maximize this opportunity.  Below, we plot the results.

We see a few interesting things of note:

  • The vast majority of models and parameterizations are ignored.
  • Time-Series MOM is heavily favored as a model, receiving nearly 60% of the portfolio weight.
  • We see a spread of weight across short, medium, and long-term weights. Short-term is heavily favored, with Time-Series MOM L0 and Price-Minus MA L0 approaching nearly 45% of model weight.
  • All three models are, ultimately, incorporated, with approximately 10% being allocated to Double MA Cross-Over, 30% to Price-Minus MA, and 60% to Time-Series MOM.

It is worth pointing out that naively allocating equally across all 48 models creates 1.18 independent bets while the full-period crystal ball generated 1.29 bets.

Of course, having a crystal ball is unrealistic.  Below, we look at a rolling window optimization that looks at the prior 5 years of weekly returns to create the most diversified portfolio.  To avoid plotting a graph with 48 different components, we have plot the results two ways: (1) clustered by process and (2) clustered by lookback period.

Using the rolling window, we see similar results as we saw with the crystal ball. First, Time-Series MOM is largely favored, often peaking well over 50% of the portfolio weights.  Second, we see that a barbelling approach is frequently employed, balancing allocations to the shortest lookbacks (L0 and L1) with the longest lookbacks (L14 and L15).  Mid-length lookbacks are not outright ignored, however, and L5 through L11 combined frequently make up 20% of the portfolio.

Finally, we can see that the rolling number of bets is highly variable over time, but optimization frequently creates a meaningful impact over an equal-weight approach.2

Conclusion

In this commentary, we have explored the idea of process diversification.  In the context of a simple long/flat trend-following strategy, we find that combining strategies that employ different trend identification models and different formation periods can lead to an increase in the independent number of bets taken by the portfolio.

As it specifically pertains to trend-following, we see that diversification appears to be maximized by allocating across a number of lookback horizons, with an optimizer putting a particular emphasis on barbelling shorter and longer lookback periods.

We also see that incorporating multiple processes can increase available diversification as well.  Interestingly, the optimizer did not equally diversify across models.  This may be due to the fact that these models are not truly independent from one another than they might seem.  For example, Zakamulin (2015) demonstrated that these models can all be decomposed into a different weighted average of the same general momentum rules.

Finding process diversification, then, might require moving to a process that may not have a common basis.  For example, trend followers might consider channel methods or a change in basis (e.g. constant volume bars instead of constant time bars).

Page 15 of 25

Powered by WordPress & Theme by Anders Norén